AP® BIOLOGY EQUATIONS AND FORMULAS

Statistical Analysis and Probability

Mean

Standard Deviation

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

Standard Error of the Mean

Chi-Square

$$SE_{\overline{x}} = \frac{S}{\sqrt{n}}$$

$$\chi^2 = \sum \frac{\left(o - e\right)^2}{e}$$

Chi-Square Table

p	Degrees of Freedom							
value	1	2	3	4	5	6	7	8
0.05	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51
0.01	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09

\overline{x} = sample mean

n = sample size

s = sample standard deviation (i.e., the sample-based estimate of the standard deviation of the population)

o = observed results

e = expected results

 $\Sigma = \text{sum of all}$

Degrees of freedom are equal to the number of distinct possible outcomes minus one.

Laws of Probability

If A and B are mutually exclusive, then:

$$P(A \text{ or } B) = P(A) + P(B)$$

If A and B are independent, then:

$$P(A \text{ and } B) = P(A) \times P(B)$$

Hardy-Weinberg Equations

$$p^2 + 2pq + q^2 = 1$$
 $p =$ frequency of allele 1 in a population $p + q = 1$ $q =$ frequency of allele 2 in a population

Metric Prefixes

<u>Factor</u>	<u>Prefix</u>	Symbol
109	giga	G
106	mega	M
103	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р

Mode = value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

^{*} For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

Rate and Growth

Rate

$$\frac{dY}{dt}$$

dY = amount of change

dt = change in time

Population Growth

$$\frac{dN}{dt} = B - D$$

B = birth rateD = death rate

Exponential Growth

$$N =$$
population size

$$\frac{dN}{dt} = r_{\text{max}} N$$

$$K = \text{carrying capacity}$$

 $r_{\text{max}} = \text{maximum per capita}$

growth rate of population

Logistic Growth

$$\frac{dN}{dt} = r_{\text{max}} N \left(\frac{K - N}{K} \right)$$

The Solute Potential of a Solution

Water Potential (Ψ)

 $\Psi_{\rm p}$ = pressure potential

 $\Psi_{\rm S}$ = solute potential

 $\Psi = \Psi_P + \Psi_S$

$$\Psi_{\rm S} = -iCRT$$

i = ionization constant (1.0 for sucrose because sucrose does not ionize in water)

The water potential will be equal to the solute potential of a solution in an open

container because the pressure potential of

the solution in an open container is zero.

C = molar concentration

R = pressure constant

(R = 0.0831 liter bars/mole K)

 $T = \text{temperature in Kelvin} (^{\circ}\text{C} + 273)$

$$pH^* = -\log[H^+]$$

Simpson's Diversity Index

Diversity Index =
$$1 - \sum \left(\frac{n}{N}\right)^2$$

n = total number of organisms of a particular species

N = total number of organisms of all species

Surface Area and Volume

Surface Area of a Sphere

$$SA = 4\pi r^2$$

Volume of a Sphere

$$V = \frac{4}{3}\pi r^3$$

Volume of a Rectangular Solid

$$V = lwh$$

h = height

1 = length

r = radius

SA = 2lh + 2lw + 2wh

Surface Area of a Rectangular Solid

$$SA = 2\pi rh + 2\pi r^2$$

$$v = \iota w n$$

w = width

Surface Area of a Cylinder

$$SA = 2\pi rh + 2\pi r$$

Volume of a Cylinder
$$V = \pi r^2 h$$

$$s =$$
length of one side of a cube

Surface Area of a Cube

$$SA = 6s^2$$

Volume of a Cube

$$V = s^3$$

SA = surface area

V = volume

^{*} For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.