

Blood, the vital "life fluid" that courses through the body's blood vessels, provides the means by which the body's cells receive vital nutrients and oxygen and dispose of their metabolic wastes. As blood flows past the tissue cells, exchanges continually occur between the blood and the tissue cells, so that vital activities can go on continuously.

In this chapter, the student has an opportunity to review the general characteristics of whole blood and plasma, to identify the various formed elements (blood cells), and to recall their functions. Blood groups, transfusion reactions, clotting, and various types of blood abnormalities are also considered.

COMPOSITION AND FUNCTIONS OF BLOOD

	_ 1, _ 2,	In terms of its tissue classification, blood is classified as a _(1) because it has living blood cells, called (2), suspended in a nonliving fluid matrix called (3). The "fibers" of blood only become width a decided (6).
	3.	of blood only become visible during (4).
		If a blood sample is centrifuged, the heavier blood cells become packed at the bottom of the tube. Most of this com-
	_ 5.	pacted cell mass is composed of <u>(5)</u> , and the volume of blood accounted for by these cells is referred to as the <u>(6)</u> . The less dense <u>(7)</u> rises to the top and constitutes about
	_ 6.	45% of the blood volume. The so-called "buffy coat" com-
	_ 7.	posed of <u>(8)</u> and <u>(9)</u> is found at the junction between the other two blood elements. The buffy coat accounts for less than <u>(10)</u> % of blood volume.
	. 8.	
2005 NAS	- 9.	Blood is scarlet red in color when it is loaded with (11); otherwise, it tends to be dark red.
	10	The same of the sa
	11.	-ve

168 Anatomy & Physiology Coloring Workbook

	y-Choices		
A.	Red blood cell	D. Basophil	G- Lym phocyte
B,	Megakaryocyte	E. Monocyte	H. Formed-elements
——————————————————————————————————————	Eosinophil	F. Neutrophil	I. Plasma
_		1. Most numerous lea	ukocyte
_		2	34. Granular leukocytes
			7. Actively phagocytic leukocytes
_			9. Agranular leukocytes
		10. Fragments to form	
		11. (A) through (G) are	
		12. Increases during all	
_			during inflammatory reactions
*2	·	tissue	bone marrow, may be formed in lymphoid
_		5. Contains hemoglobi	in
-	1	6. Primarily water, non	ncellular; the fluid matrix of blood
			during prolonged infections
****		8. Least numerous lenk	
			20. Also called white blood cells (#19–23)
0		1.	22
blank	e 10–1 depicts in incor the rate of erythropoi	mplete form the erythroesis. Complete the stat	opoietin mechanism for reguerements that have answer
und (orreshoriging and CIGILE	normal life span of en	or all arrows on the diagram

- 4. Four leukocytes are diagrammed in Figure 10–2. First, follow directions (given below) for coloring each leukocyte as it appears when stained with Wright's stain. Then, identify each leukocyte type by writing in the correct name in the blank below the illustration.
 - A. Color the granules pale violet, the cytoplasm pink, and the nucleus dark purple.
 - B. Color the nucleus deep blue and the cytoplasm pale blue.
 - C. Color the granules bright red, the cytoplasm pale pink, and the nucleus red/purple.
 - D. For this smallest white blood cell, color the nucleus deep purple/blue and the sparse cytoplasm pale blue.

Figure 10~2

5. For e	each <u>true statement, in</u> Inderlined term by ins	sert T. If any of the streeting the correction in	atements are false the answer bland	correct c.	manus and past of the past of
		1. White blood cells (by the process of <u>c</u>		and out of blood vessels	-
	715	2. An abnormal decrea	ise in the number	of white blood cells is	
over challed to a control		3. When blood becomes system and the <u>lives</u> normal pH range.	es too acid or too may be called in	basic, both the respirator to action to restore it to its	y 3
		i. The normal pH rang	ge of blood is 7.00) to 7.45.	-
-	5	. The cardiovascular s approximately 4 lite		ge adult contains	
	6	. Blood is circulated t action of the heart.	hrough the blood	vessels by the pumping	
	7	. An abnormal increas leukocytosis.	e in the number of	of white blood cells is	
	8	. The normal RBC cou	ınt is <u>3.5–4.5</u> milli	on/mm³.	
-	9	Normal <u>hemoglobin</u> volume of whole blo		area of 42%-47% of the	
	10	An anemia resulting blood to become mo	from a decreased ore viscous.	RBC number causes the	ti villado, ed
	11	Phagocytic agranular	WBCs are eosino	phils.	
	12.	The leukocytes particare monocytes.	cularly important i	n the immune response	
6. Circle	the term that does not	belong in each of the	following groupi	ngs.	
1. Ery	throcytes Lyn	nphocytes Mo	onocytes	Eosinophils	
2. Neu	itrophils Mon	ocytes Basor	hils Eosi	nophils	
3. Her	nogłobin Lyn	phocyte Oxy	gen transport	Erythrocytes	
4. Plat	elets Monocy	tes Phagocyt	osis Neut	rophils	
5. Thre	ombus Aneur	ysm Embolus	6 Clot		
6. Plas	ma Nutrients	Hemoglobin	Wastes	A Deligion	200. 1
7. Mye	eloid stem cell	Lymphocyte	Monocyte	Basophil	· ·

	7. Check (*) all the i	actors that would serve	is stimuli for erythropolesis.	
	1. Hemorr	hage	3. Living at a high-altitude	
	2. Aerobio	exercise	4. Breathing pure oxygen	
77.72	HEMOSTASIS			101
	8. Using key-choices, clotting process. Ins	correctly complete the for sert the key term or letter	llowing description of the blood- in the answer blanks.	
	Key Choices			
	A. Break	D. Fibrinogen	G. Serotonin	
	B. Erythrocytes	E. Platelets	H. Thrombin	
	C. Fibrin	F. Prothrombin	I. Tissue factor	
		2. and release constricting 3. cells in the be converted enzyme to a	dediately, (2) cling to the blood (3), which helps to decrease the vessel. (4) is also released area. This chemical substance caud to (6). Once present, thrombattach (7) molecules together to	blood loss by by damaged uses (5) to bin acts as an
		2. and release constricting 3. cells in the be converted enzyme to a	(3), which helps to decrease the vessel. (4) is also released area. This chemical substance cannot to (6). Once present, thrombattach (7) molecules together to trands of (8), which then trape	blood loss by by damaged uses (5) to bin acts as an
		2. and release constricting 3. cells in the be converted enzyme to a threadlike s	(3), which helps to decrease the vessel. (4) is also released area. This chemical substance cannot to (6). Once present, thrombattach (7) molecules together to trands of (8), which then trape	blood loss by by damaged uses (5) to bin acts as an
		2. and release constricting 3. cells in the be converted enzyme to a threadlike s	(3), which helps to decrease the vessel. (4) is also released area. This chemical substance cannot to (6). Once present, thrombattach (7) molecules together to trands of (8), which then trape	blood loss by by damaged uses (5) to bin acts as an
		2. and release constricting 3. cells in the be converted enzyme to a threadlike s	(3), which helps to decrease the vessel. (4) is also released area. This chemical substance cannot to (6). Once present, thrombattach (7) molecules together to trands of (8), which then trape	blood loss by by damaged uses (5) to bin acts as an
		2. and release constricting 3. cells in the be converted enzyme to a threadlike s 5. by in the bl 6.	(3), which helps to decrease the vessel. (4) is also released area. This chemical substance cannot to (6). Once present, thrombattach (7) molecules together to trands of (8), which then trape	blood loss by by damaged uses (5) to bin acts as an
9	For each true statement underlined term by in	2. and release constricting 3. cells in the be converted enzyme to a threadlike s 5. by in the bl 6. 7. 8.	(3), which helps to decrease the vessel. (4) is also released area. This chemical substance cand to (6). Once present, thrombattach (7) molecules together totrands of (8), which then trappood.	blood loss by by damaged uses (5) to bin acts as an
9	For each true statement underlined term by in	2. and release constricting 3. cells in the be converted enzyme to a threadlike s 5. by in the bl 6. 7. 8. 9. ent, write T. If any staten inserting the correction in	(3), which helps to decrease the vessel. (4) is also released area. This chemical substance cannot to (6). Once present, thrombattach (7) molecules together totrands of (8), which then trappood.	blood loss by by damaged uses (5) to bin acts as an
9	For each true statement underlined term by in	2. and release constricting 3. cells in the be converted enzyme to a threadlike s 5. by in the bl 6. 7. 8. 9. ent, write T. If any statemenserting the correction in 1. Normally, blood	(3), which helps to decrease the vessel. (4) is also released area. This chemical substance cand to (6). Once present, thrombattach (7) molecules together totrands of (8), which then trappood.	blood loss by by damaged uses (5) to oin acts as an o form long, s (9) flowing

The major structures of the cardiovascular system, the heart and blood vessels, play a vital role in human physiology. The major function of the cardiovascular system is transportation. Using blood as the transport vehicle, the system carries nutrients, gases, wastes, antibodies, electrolytes, and many other substances to and from body cells. Its propulsive force is the contracting heart.

The anatomy and location of the heart and blood vessels and the important understandings of cardiovascular physiology (for example, cardiac cycle, ECG, and regulation of blood pressure) are the major topics of this chapter.

CARDIOVASCULAR SYSTEM: THE HEART

-	1,	The heart is a cone-shaped muscular organ located within the (1). Its apex rests on the (2), and its base is at the level
	2.	of the (3) rib. The coronary arteries that nourish the
4) (1)	3.	myocardium arise from the <u>(4)</u> . The coronary sinus empties into the <u>(5)</u> . Relative to the roles of the heart chambers, the <u>(6)</u> are receiving chambers, whereas the <u>(7)</u> are
	4.	discharging chambers. The membrane that lines the heart and
		also forms the valve flaps is called the (8). The outermost
-	5.	layer of the heart is called the (9). The fluid that fills the pericardial sac acts to decrease (10) during heart activity.
· 1	6.	The heart muscle, or myocardium, is composed of a specialized type of muscle tissue called (11).
	7.	7,1
	8	
	9.	1000
	10.	

178 Anatomy & Physiology Coloring Workbook

2. The heart is called a double pump because it serves two circulations. Trace the flow of blood through both the pulmonary and systemic circulations by writing the missing terms in the answer blanks. Then, color regions transporting O₂-poor blood blue and regions transporting O₂-rich blood red on Figure 11–1. Finally, identify the various regions of the circulation shown in Figure 11–1 by labeling them using the key choices.

		1.
	then make	
=		4.
-		5.
(<u> </u>		6.
		7.
		8.
		9.
		10.
-		11.
	-	12.
		13.

From the right atrium through the tricuspid valve to the __(1)_, through the __(2)_ valve to the pulmonary trunk to the right and left __(3)_, to the capillary beds of the __(4)_ to the __(5)_ to the __(6)_ of the heart through the __(7)_ valve, to the __(8)_ through the __(9)_ semilunar valve, to the __(10)_, to the systemic arteries, to the __(11)_ of the body tissues, to the __systemic veins, to the __(12)_ and __(13)_, which enter the right atrium of the heart.

Figure 11-1

Key Choices

- A. Vessels serving head and upper limbs
- B. Vessels serving body trunk and lower limbs
- C. Vessels serving the viscera
- D. Pulmonary circulation
- E. Pulmonary "pump"
- F. Systemic "pump"

3. Figure 11-2 is an anterior view of the heart. Identify each numbered structure and write its name in the corresponding numbered space below the figure. Then, select different colors for each structure provided with a color-coding circle, and use them to color the coding circles and corresponding structures on the figure.

Figure 11-2

0	1	6.	O	11.
0	2.	7.		12,
	3.	8.		13.
O	4.	9.		14
	5. –	10. (O	<u> </u>

180 Anatomy & Physiology Coloring Workbook

Intercalated discs

4.	Figure 11–3 is a schematic drawing of the microscopic structure of cardiac muscle. Using different colors, color the coding circles of the structures listed below and the corresponding structures on the figure.	
	Nuclei (with nucleoli) Muscle fibers	1 -

Striations

Figure 11-3

5. The events of one complete heartbeat are referred to as the cardiac cycle. — Complete the following statements that describe these events. Insert your answers in the answer blanks.

	1.	The contraction of the ventricles is referred to as(1)_, and
	2.	the period of ventricular relaxation is called (2). The monosyllables describing heart sounds during the cardiac cycle are (3). The first heart sounds during the cardiac
	3.	cycle are <u>(3)</u> . The first heart sound is a result of closure of the <u>(4)</u> valves; closure of the <u>(5)</u> valves causes the second heart sound. The heart should be at least sound.
	4.	ond heart sound. The heart chambers that have just been filled when you hear the first heart sound are the _(6)_, and the chambers that have just an artist of the chambers that have just on the chambers that have just been filled when you hear the first heart sound are the _(6)_, and _(6)_, and _(6)_, are the chambers that have just been filled when you hear the first heart sound are the _(6)_, and _(6)_, are the chambers that have just been _(6)_, and _(6)_, are the _(6)
	5.	the chambers that have just emptied are the (7). Immediately after the second heart sound, the (8) are filling with blood, and the (9) are empty. Abnormal heart sounds, or
	6.	(10), usually indicate valve problems.
iber.	-	confic obs.
	7.	9.
	8	10.

6. Figure 11-4 is a diagram of the frontal section of the heart. Follow the instructions below to complete this exercise.

First, draw arrows to indicate the direction of blood flow through the heart. Draw the pathway of the oxygen-rich blood with red arrows, and trace the pathway of oxygen-poor blood with blue arrows.

Second, identify each of the elements of the intrinsic conduction system (numbers 1-5 on the figure) by inserting the appropriate terms in the blanks left of the figure. Then, indicate with green arrows the pathway that impulses take through this system.

Third, correctly identify each of the heart valves (numbers 6-9 on the figure) by inserting the appropriate terms in the blanks left of the figure, and draw in and identify by name the cordlike structures that anchor the flaps of the atrioventricular (AV) valves.

Fourth, use the numbers from the figure to identify the structures described below. Place the numbers in the lettered answer blanks.

- Prevent backflow into the ventricles when the heart is relaxed
- D. Prevent backflow into the atria when the ventricles are contracting
- AV valve with three flaps

7. Match the terms provided in Column B with the statements given in Column A. Place the correct term or letter response in the answer blanks.

Column A Column B 1. A recording of the electrical activity of A. Angina pectoris the heart B. Bradycardia 2. The period during which the atria are -depolarizing-C. Electrocardiogram 3. The period during which the ventricles D. Fibrillation are repolarizing E. Heart block 4. The period during which the ventricles are depolarizing, which precedes their F. P wave contraction G. QRS wave 5. An abnormally slow heartbeat, that is, below 60 beats per minute H. T wave 6. A condition in which the heart is Tachycardia uncoordinated and useless as a pump 7. An abnormally rapid heartbeat, that is, over 100 beats per minute 8. Damage to the AV node, totally or partially releasing the ventricles from the control of the sinoatrial (SA) node 9. Chest pain, resulting from ischemia of the myocardium

8. A portion of an electrocardiogram is shown in Figure 11–5. On the figure identify the QRS complex, the P wave, and the T wave. Then, using a red pencil, bracket a portion of the recording equivalent to the length of one cardiac cycle. Using a blue pencil, bracket a portion of the recording in which the *ventricles* would be in diastole.

Figure 11-5

die missing terms in the	answer blanks.
	1. In the relationship CO = HR x SV, CO stands for (1), HR
	-stands for (2), and 3V stands for (3). For the normal
	2. resting heart, the value of HR is <u>(4)</u> and the value of SV is
····	(5) The normal average adult cardiac output, therefore, is
And the second second	3. (6) The time for the entire blood supply to pass through
	the body is once each
	4.
- 32. 12. 1	According to Starling's law of the heart, the critical factor that
	3. determines force of heartbeat, or (8) is the degree of
	Of the cardiac muscle just before it contracts. Conso
	6. quently, the force of heartbeat can be increased by increasing
-	the amount of (10) returned to the heart.
	. 7.
	8 9 10.
Charle (A) the	lead to an increase in cardiac output by influencing
either heart rate or stroke	
_	6. Activation of the sympathetic nervous system
2. Thyroxine	7. Activation of the vagus nerves
3. Hemorrhage	8. Low blood pressure
4. Fear	9. High blood pressure
5. Exercise	10. Fever
For each of the following	
For any false statements	statements that is true, write T in the answer blank.
term in the answer blank.	orrect the <u>underlined</u> term by writing the correct
torin in the answer plank,	•
	1. The rectine beauty of the second of the s
	1. The resting heart rate is fastest in adult life.
	Recause the hoost of the 1.111
	 Because the heart of the highly trained athlete hypertrophies, its stroke volume decreases.
	its stroke volume decreases,
	If the right side of the boost Salar at
	3. If the right side of the heart fails, pulmonary congestion occurs.
4	In peripheral congection the fact and leave to
	i. In <u>peripheral</u> congestion, the feet, ankles, and fingers become edematous.
	. The pumping action of the healthy heart ordinarily maintains a
	balance between cardiac output and venous return.
	we we comput and venous return,

	following descriptions. Insert the	term or letter
of the key choice in the	inswer blanks.	
Key Choices	and	
A. Tunica intima	B. Tunica media	C. Tunica externa
	1. Single thin layer of endothel	ium
	2. Bulky middle coat, containing	ng smooth muscle and elastin
	3. Provides a smooth surface to	decrease resistance to blood flow
s	4. The only tunic of capillaries	
	5. Also called the adventitia	-
	6. The only tunic that plays an	active role in blood pressure regulation
	7. Supporting, protective coat	
A	Figure 11-6	C

17. Figures 11–7 and 11–8 on pp. 186 and 187 illustrate the location of the most important arteries and veins of the body. The veins are shown in Figure 11–7. Color the veins blue and then identify each vein provided with a leader line on the figure. The arteries are shown in Figure 11–8. Color them red and then identify those indicated by leader lines on the figure. NOTE: If desired, the vessels identified may be colored differently to aid you in their later identification.

Figure 11-7 Veins

Figure 11-8 Arteries