1) Follow checklist
2) Module 15 out Pg. 423
3) Journal, paper & pencil out
4) Warm Up:

1. Find the surface area of the figure represented by the net below.

```
8 cm
```

```
6.4 cm
```
1. Find the surface area of the figure represented by the net below.

\[A = \frac{1}{2} \cdot bh \]
\[A = \frac{1}{2} \cdot 8 \cdot 6.4 \]
\[A = 4 \cdot 6.4 \]
\[A = (25.6 \text{ cm}^2) \times 4 \]

Total SA \(\Delta = 102.4 \text{ cm}^2 \)

\[A = lw \]
\[A = 8.8 \]
\[A = 64 \text{ cm}^2 \]

Total S.A. = 166.4 cm\(^2\)
5. Use a net to find the surface area of the cereal box.

Total surface area: \(272 \text{ in}^2\)

6. Inez bought a shipping container at a packaging store. She measured the dimensions shown to the nearest tenth.

a. Sketch a net of the container, and label the dimensions.

![Net diagram with dimensions labeled]

b. Find the surface area of the shipping container.

\(180 \text{ square inches}\)

7. Raj builds a side table in the shape of a cube. Each edge of the cube measures 20 inches. Raj wants to cover the top and four sides of the table with ceramic tiles. Each tile has an edge length of 5 inches. How many tiles will he need?

80 tiles

8. Santana wants to cover a gift box shaped like a rectangular prism with foil. The foil costs $0.03 per square inch. Santana has a choice between Box A which is 8 inches long, 3 inches wide, and 6 inches high, and Box B which is 10 inches long, 3 inches wide, and 4 inches high. Which box will be less expensive to cover with foil, and by how much?

Box B will cost $0.48 less than Box A.

9. Vocabulary

Name a three-dimensional shape that has four triangular faces and one rectangular face. Name a three-dimensional shape that has three rectangular faces and two triangular faces.

rectangular pyramid; triangular prism

10. Victor wrapped the gift box shown with adhesive paper (with no overlaps). How much paper did he use?

\(236 \text{ in}^2\)
1. Find the volume.

\[V = l \times w \times h \]

\[V = \frac{1}{2} \text{ ft} \times 3 \text{ ft} \times \frac{3}{4} \text{ ft} \]

\[V = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} \]

\[V = \frac{9}{8} \text{ ft}^3 \]

or

\[1\frac{1}{8} \text{ ft}^3 \]
3. Find the volume if each cube has a 1½ inch edge.

\[V = \text{length} \times \text{width} \times \text{height} \]

\[V = \frac{9}{2} \times \frac{15}{2} \times \frac{3}{1} \]

\[V = \frac{135}{4} \times \frac{3}{1} \]

\[V = \frac{405}{4} \text{ in}^3 \]

or

\[V = 101 \frac{1}{4} \text{ in}^3 \]
Your turn:

Read Pgs. 425-428
Complete Pgs. 429

READ first....

then use resources...
we are here to help! :)