TEMPERATURE AND HEAT

Temperature – a measure of the average value of the		
	of the molecules in random motion. (SI Unit for	
temperature is Kelvin	(K)).	

Thermal expansion – almost all substances _______when they are Heated and ______when they are cooled -----exception water

Thermal ene	rgy – sum of the	and	
	energy of all the p	particles in an object; thermal energy	y of
an object	as ten	nperature increases	

Temperature Conversion Equations		
°F → °C	°C → °F	
°C = (5/9)(°F - 32)	°F = (9/5)(°C) + 32	

_____ – thermal energy that flows from something at a

_____temperature to something at a

_____ temp.

Specific heat – amt of heat Needed to raise the temp of 1 kg of some material by 1°C

Thermal Energy Equation

(Q)

Change in thermal energy (J) =Mass $(kg) \times$ temp (°C) \times (c) Specific heat $(J/kg^{\circ}C)$ $Q = m(T_f - T_i) C$

Specific Heat of		
Common Materials		
Substance Spec. Heat		
	(J/(kg°C))	
Water	4, 184	
Wood	1, 760	
Carbon	710	
Glass	664	
Iron	450	

Matter & Energy

🗸 Solids: Defini	te and defined
	; particles are closely packet and
ordered.	
✓ Liquids:	and NO
	of its own. Particles are
	UI It's UWII. I at ticles at c
	of its own. I alticles all packed but not as ridged as a solid
✓ Gas: can flow	
✓ Gas: can flow	 packed but not as ridged as a solid

_

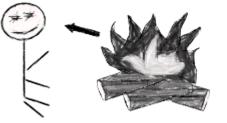
_

TRANSFERRING THERMAL ENERGY

Thermal energy is transferred from place to place by:

CONDUCTION	CONVECTION	RADIATION
transfer of	transfer of thermal	transfer of energy by
thermal energy	energy in a fluid	electromagnetic
by collisions	by the movement	waves.
between particles	of warmer and	
in matter	cooler fluid from	
	place to place.	

Conduction occurs in <u>solids</u>, <u>liquids</u>, and <u>gases</u>. ______ are the <u>best</u> conductors of heat


______ occurs in fluids. Rising of warmer fluid and sinking of cooler fluid forms a convection current

The transfer of energy by radiation is most important ____

Insulator - material in which heat flows slowly

Examples of materials that are insulators are <u>wood</u>, some <u>plastics</u>, <u>fiberglass</u>, and <u>air</u>.

USING HEAT

All heating systems require some source of energy – common types include:

Forced – Air Systems – most common type of heating using a furnace to heat air then a fan blows air through ducts to rooms

Radiator Systems – closed metal container that contains hot water or steam which is transferred to surrounding air by <u>conduction</u>; this warm air moves through room by <u>convection</u>

Electric Heating Systems – electrically heated coils placed in floors and in walls heat surrounding air by <u>conduction</u>

Two types of systems that use Sun's energy:

Positive Solar heating – radiant energy from the sun is transferred to the room through windows

Active Solar heating – systems that use solar collectors that absorb radiant energy from sun

Thermodynamics – study of the relationship among thermal energy, heat and work

1st Law – the increase in thermal energy of a system equals the work done on the system plus the heat transferred to the system

2nd Law – it is impossible for heat to flow from cool object to warm object unless <u>work</u> is done