Factors, Multiples, and Number Patterns

Show What You Know

Skip Count Skip count to find the unknown numbers.

1. Skip count by 3 s .
2. Skip count by 5 s .
\qquad
\qquad , \qquad , \qquad
5 , \qquad , \qquad , \qquad

Arrays Use the array to find the product.

\qquad rows of \qquad $=$ \qquad -

Multiplication Facts Find the product.

5. $4 \times 5=$ \qquad
6. $9 \times 4=$ \qquad 7. $6 \times 7=$ \qquad

MATH in the

 Nor

Recycled plastic helps keep people warm. Some factories use recycled plastic, combined with other fabrics, to make winter jackets. A warehouse has 46 truckloads of recycled plastic and uses 8 truckloads each day. When there are fewer than 16 truckloads left, more plastic needs to be ordered. How many truckloads will be left after 2 days? after 3 days? When will more plastic need to be ordered?
\qquad $=$ \qquad
6. 9×4

Vocabulary Builder

Visualize It

Complete the flow map by using the words with a \checkmark.

Understand Vocabulary

Complete the sentences by using preview words.

Connect to Vocabulary

Review Words

\checkmark array common factor
\checkmark factor multiple
\checkmark product
Preview Words
common multiple composite number divisible pattern prime number term

1. A number that is a multiple of two or more numbers is a
\qquad .
2. A number that has exactly two factors, 1 and itself, is a
\qquad .
3. A number that has more than two factors is a
\qquad .
4. A number is \qquad by another number if the quotient is a counting number and the remainder is 0 .
5. An ordered set of numbers or objects is a \qquad .
6. Each number in a pattern is called a \qquad .

Factors and Divisibility

I Can determine if one number is a factor of another number.

U UNLOCK the Problem Ray
 UNLOCK the Problem Read

Students in Carlo's art class painted 32 square tiles for a mosaic. They will arrange the tiles to make a rectangle. Can the rectangle have 32 tiles arranged into 3 equal rows, without gaps or overlaps?

One Way Draw a model.

Think: Try to arrange the tiles into 3 equal rows to make a rectangle.

Florida's B.E.S.T.

Algebraic Reasoning 4.AR.3.1, 4.AR.1.1

- Number Sense \& Operations 4.NSO.2.1
- Mathematical Thinking \& Reasoning

MTR.2.1, MTR.3.1, MTR.4.1, MTR.5.1,
MTR.7.1

Δ Mosaics are decorative patterns made with pieces of glass or other materials.

A rectangle \qquad have 32 tiles arranged into 3 equal rows.

Another Way Use division.

If 3 is a factor of 32 , then the unknown factor in $3 \times=32$ is a whole number.

Think: Divide to see whether the unknown factor is a whole number.

Math Idea

A factor of a number divides the number evenly. This means the quotient is a whole number and the remainder is 0 .

- Explain how you can tell if 4 is a factor of 30 .

MTR Engage in discussions on 4.1 mathematical thinking.

How does the model relate to the quotient and remainder for $32 \div 3$?

Divisibility Rules A number is divisible by another number if the quotient is a counting number and the remainder is 0 .

Some numbers have a divisibility rule. You can use a divisibility rule to tell whether one number is a factor of another.

Is 6 a factor of 72?
Think: If 72 is divisible by 6 , then 6 is a factor of 72 .
Test for divisibility by 6 :

Divisibility Rules	
Number	Divisibility Rule
2	The number is even.
3	The sum of the digits is divisible by 3.
5	The last digit is 0 or 5.
6	The number is even and divisible by 3.
9	The sum of the digits is divisible by 9.

Is 72 even? \qquad
What is the sum of the digits of 72 ?
\qquad $+$ \qquad $=$ \qquad
Is the sum of the digits divisible by 3 ?
\qquad
72 \qquad divisible by 6

So, 6 is a factor of 72 .

Try This! List all the factor pairs for 72 in the table.

Complete the table.

Show your work.

MTR Engage in discussions on 4.1 mathematical thinking.
\qquad

Share and Show limoth

1. Is 4 a factor of 28 ? Draw a model to help.

Think: Can you make a rectangle with 28 squares in 4 equal rows?

4 \qquad a factor of 28 .

Is 5 a factor of the number? Write yes or no.
2. 273. 30
4. 36
C) 5. 53

Engage in discussions on mathematical thinking. If 3 is a factor of a number, is 6 always a factor of the number? If not, give an example.

On Your Own

Is 9 a factor of the number? Write yes or no.
6. 54
7. 63
8. 67
9. 93

List all the factor pairs in the table.
10.

11.

Factors of 39		
$\times \ldots=$		
$\times \ldots$		

\qquad
\qquad
\qquad
\qquad

List all the factor pairs for the number. Make a table to help.
12. 56
13. 64

Problem Solving - Applications Roald

Use the table for Problems 14-15.
14. Dirk bought a set of stamps. The number of stamps in the set he bought is divisible by 2,3 ,
 5,6 , and 9 . Which set is it?
15. Geri wants to put 6 stamps on some pages in her stamp book and 9 stamps on other pages. Explain how she could do this with the stamp set for Sweden.
\qquad
\qquad
Show the Math
Demonstrate Your Thinking
16. MTR George said if 2 and 4 are factors of a number, then 8 is a factor of the number. Is he correct? Explain.
\qquad
\qquad
\qquad
17. Classify the numbers. Some numbers may belong in more than one box.

27	45	54	72	81

Stamps Sets	
Country	Number of stamps
Germany	90
Sweden	78
Japan	63
Canada	25

Factors and Divisibility

Go Online

Interactive Examples
Is 6 a factor of the number? Write yes or no.

1. 36
2. 56
3. 42
4. 66

Think: $6 \times 6=36$
yes

Is 5 a factor of the number? Write yes or no.
5. 38
6. 45
7. 60
8. 39

List all the factor pairs in the table.

9.

10.

11. List all the factor pairs for 48 . Make a table to help.
\qquad
\qquad

Problem Solving noald

12. Bryson buys a bag of 64 plastic miniature dinosaurs. Could he distribute them equally into six storage containers and not have any left over? Explain.
13. WRITE Math Find the factors of 42 . Show and explain your work, and list the factor pairs in a table.

Lesson Check

14. Write three numbers greater than 20 that have 9 as a factor.

Spiral Review

16. Write an expression that can be used to find 4×275 using mental math and properties of numbers.
17. Jay has $\$ 55$. She earns $\$ 67$ by doing chores. How much money does Jay have now?
18. What digit(s) can be in the ones place of a number that has 5 as a factor?
19. Jack broke apart 5×216 as $(5 \times 200)+$ (5×16) to multiply mentally. What strategy did Jack use?
\qquad
\qquad
20. Trina has 72 collector's stamps. She puts 43 of the stamps into a stamp book. How many stamps are left?

Factors and Multiples

Can recognize how factors and multiples are related.

Florida's B.E.S.T.

Algebraic Reasoning 4.AR.3.1, 4.AR.1.1 - Number Sense \& Operations 4.NSO.2.1

- Mathematical Thinking \& Reasoning MTR.2.1, MTR.3.1, MTR.4.1, MTR.5.1, MTR.7.1

UNLOCK the Problem Rorid

Toy animals are sold in sets of $3,5,10$, and 12 .
Rafa wants to make a display with 3 animals in each row. Which sets could he buy, if he wants to display all of the animals?

The product of two numbers is a multiple of each number. Factors and multiples are related.

One Way Find factors.

Tell whether 3 is a factor of each number.
Think: If a number is divisible by 3 , then 3 is a factor of the number.
Is 3 a factor of 3 ? \qquad
Is 3 a factor of 5 ? \qquad
Is 3 a factor of 10 ? \qquad

Is 3 a factor of 12? \qquad
3 is a factor of \qquad and \qquad .

Another Way find multiples.

Multiply and make a list. \qquad , \qquad , , \qquad , $1 \times 3 \quad 2 \times 3 \quad 3 \times 3 \quad 4 \times 3 \quad 5 \times 3$
\qquad and \qquad are multiples of 3 .

So, Rafa could buy sets of \qquad and \qquad toy animals.

Math	
Talk	MTR Engage in discussions on 4.1 mathematical thinking.
	Explain how you can use what you know about factors to determine whether one number is a multiple of another number.

Common Multiples A common multiple is a multiple that is shared by two or more numbers.

Example Find common multiples.

Tony works every 3 days and Svetlana works every 5 days. If Tony works June 3 and Svetlana works June 5, on what days in June will they work together?

Circle multiples of 3. Draw a box around multiples of 5 .

June							
Sun	Mon	Tue	Wed	Thu	Fri	Sat	
	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
21	22	23	24	25	26	27	
28	29	30					

Think: The common multiples have both a circle and a box.
The common multiples are \qquad and \qquad .

So, Tony and Svetlana will work together on June \qquad and June \qquad .

Share and Show
 Math
 Board:

1. Multiply to list the next five multiples of 4 .

4 , \qquad , \qquad , \qquad , \qquad , \qquad
1×4

Is the number a factor of 12 ? Write yes or no.
2. 3
3. 6
4. 16
5. 18

Is the number a multiple of 6 ? Write yes or no.
6. 3
7. 6
8. 16
9. 18
\qquad

On Your Own

Is the number a multiple of $\mathbf{3}$? Write yes or no.
10. 4
11. 8
12. 24
13. 38
14. List the next nine multiples of each number. Find the common multiples.

Multiples of 2: 2, \qquad
Multiples of 8: 8, \qquad
Common multiples: \qquad

MTR Find the unknown number.

15. $12,24,36$,
 \qquad
 Tell whether 20 is a factor and or multiple of the number.
 Write factor, multiple, or neither.

16. $25,50,75,100$, \qquad
17. 10
18. 20
19. 30
\qquad
\qquad

Write true or false. Explain.
20. Every whole number is a multiple of 1 .
\qquad
\qquad
22. Julio wears a blue shirt every 3 days. Larry wears a blue shirt every 4 days. On April 12, both Julio and Larry wore a blue shirt. What is the next date that they will both wear a blue shirt?

April						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					

21. Every whole number is a factor of 1 .
\qquad
\qquad

Problem Solving • Applications Reald

Complete the Venn diagram. Then use it for Problems 23-25.
23. What multiples of 4 are not factors of 48 ?
24. What factors of 48 are multiples of 4 ?
25. Look back at Problem 24. Write a similar problem by changing the numbers. Then solve.

Show the Math

Demonstrate Your Thinking
26. Kia paid $\$ 10$ for two charms. The price of each charm was a multiple of $\$ 2$. What are the possible prices of the charms?
\qquad
27. MTR The answer is $9,18,27,36,45$. What is the question?
28. WRITE Math How do you know whether a number is a multiple of another number?
\qquad
\qquad
29. For problems 29a-29e, select True or False for each statement.

29a. The number 45 is a multiple of 9 .
O True
O False
29b. The number 4 is a multiple of 16 .True

- False

29c. The number 33 is a multiple of 3 .
○ True
\bigcirc False
29d. The number 4 is a factor of 28.True
○ False
29e. The number 32 is a factor of 8 .
O True

- False

Factors and Multiples

Go Online

Interactive Examples
Is the number a multiple of 8 ? Write yes or no.

1. 4
2. 8
3. 20
4. 40

Think: Since $4 \times 2=8$, 4 is a factor of 8 , not a multiple of 8.

List the next nine multiples of each number.

Find the common multiples.
5. Multiples of 4: 4, \qquad
Multiples of 7: 7, \qquad
Common multiples: \qquad
6. Multiples of 3:3, \qquad
Multiples of 9: 9, \qquad
Common multiples: \qquad

Tell whether 24 is a factor or multiple of the number.
Write factor, multiple, or neither.
7. 6
8. 36
9. 48

Problem Solving Reald

10. Duy paid $\$ 12$ for two magazines. The cost of each magazine was a multiple of $\$ 3$. What are the possible prices of the magazines?
11. Nhi bought some shirts for $\$ 12$ each. Marge bought some shirts for $\$ 8$ each. The girls spent the same amount of money on shirts. What is the least amount they could have spent?
12. WRITE Math Write a word problem that can be solved by
finding the numbers that have 11 as a factor.

Lesson Check

13. Of the numbers listed below, which are not multiples of 4 ?

$$
2,4,7,8,12,15,19,24,34
$$

Spiral Review

15. Jenny has 50 square tiles. She arranges the tiles into a rectangular array of 4 rows. How many tiles will be left over?
16. There are 18 rows of seats in the auditorium. There are 24 seats in each row. How many seats are in the auditorium?
17. What number is a common multiple of 6 and 9 ?
\qquad
18. Jerome added two numbers. The sum was 83 . One of the numbers was 45. What was the other number?
19. The population of Riverdale is 6,735 . What is the value of the 7 in the number 6,735 ?

Prime and Composite Numbers

I Can determine whether a whole number is prime or composite.

Florida's B.E.S.T.

Algebraic Reasoning 4.AR.3.1

- Mathematical Thinking \& Reasoning MTR.2.1, MTR.3.1, MTR.4.1, MTR.5.1, MTR.7.1

UNLOCK the Problem
 Rab

Students are arranging square tables to make one larger, rectangular table. The students want to have several ways to arrange the tables. Should they use 12 or 13 tables?

Use a grid to show all the possible arrangements of 12 and 13 tables.

Draw all of the possible arrangements of 12 tables and 13 tables. Label each drawing with the factors modeled.

- What are the factors of 12 ?
\qquad

Common Error

The same factors in a different order should be counted only once. For example, 3×4 and 4×3 are the same factor pair.

MTR
Engage in discussions on mathematical thinking.

Explain how knowing whether 12 and 13 are prime or composite could have helped you solve the problem above.

- A prime number is a whole number greater than 1 that has exactly two factors, 1 and itself.
- A composite number is a whole number greater than 1 that has more than two factors.

Factors of 12: \qquad , \qquad , \qquad , \qquad , \qquad , \qquad

Factors of 13: \qquad , \qquad
12 is a \qquad number, and 13 is a \qquad number.

Divisibility You can use divisibility rules to help tell whether a number is prime or composite. If a number is divisible by any number other than 1 and itself, then the number is composite.

Tell whether 51 is prime or composite.
Is 51 divisible by 2 ?

Is 51 divisible by 3 ?

Math Idea

The number 1 is neither prime nor composite, since it has only one factor: 1 .

Think: 51 is divisible by a number other than 1 and 51 .
51 has more than two factors.
So, 51 is \qquad .

Share and Show Math

1. Use the grid to model the factors of 18 . Tell whether 18 is prime or composite.

Factors of 18: \qquad , \qquad , \qquad , \qquad ,

Think: 18 has more than two factors.
So, 18 is \qquad .

MTR Use patterns and 5.1 structure. Is the product of two prime numbers prime or composite? Explain.

Tell whether the number is prime or composite.

2. 11

Think: Does 11 have other factors besides 1 and itself?
3. 73

C4. 695. 42
\qquad

On Your Own

Tell whether the number is prime or composite.
6. 18
7. 49
8. 29
9. 64
\qquad
\qquad
\qquad
10. 33
11. 89
12. 52
13. 76

Write true or false for each statement. Explain or give an example to support your answer.
14. Only odd numbers are prime numbers.
15. A composite number cannot have three factors.

\qquad
\qquad

Problem Solving • Applications Reald

16. I am a number between 60 and 100. My ones digit is two less than my tens digit. I am a prime number. What number am I?
17. Choose the words that correctly complete the sentence.

Connect to Social Studies

The Sieve of Eratosthenes

Eratosthenes was a Greek mathematician who lived more than 2,200 years ago. He invented a method of finding prime numbers, which is now called the Sieve of Eratosthenes.
19. Follow the steps below to circle all prime numbers less than 100 . Then list the prime numbers.

STEP 1

Cross out 1 , since 1 is not prime

STEP 2
Circle 2, since it is prime. Cross out all other multiples of 2 .

STEP 3
Circle the next number that is not crossed out. This number is prime. Cross out all the multiples
of this number.

STEP 4
Repeat Step 3 until every number is either circled or crossed out.

So, the prime numbers less than 100 are
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Prime and Composite Numbers

Go Online

Interactive Examples
Tell whether the number is prime or composite.

1. 47
2. 68
3. 52

Think: Does 47 have other factors besides 1 and itself?
prime
4. 63
5. 75
6. 31
7. 77
8. 59
9. 87

Problem Solving forld

10. Tai wrote the number 85 on the board. Is 85 prime or composite? Explain.
11. Yuki says that 43 is a 2-digit odd number that is composite. Is she correct? Explain.
12. WRITE Math Describe how to decide if 94 is a prime number or composite number.
\qquad
\qquad

Lesson Check

13. Is the number 5 prime, composite, or neither?

Spiral Review

15. A recipe for a vegetable dish contains a total of 924 calories. The dish serves 6 people. How many calories are in each serving?
16. A total of 152,909 people visited a national park during one weekend. What is this number rounded to the nearest hundred thousand?
\qquad
17. Is the number 1 prime, composite, or neither?
18. A store clerk has 45 shirts to pack in boxes. Each box holds 6 shirts. What is the fewest boxes the clerk will need to pack all the shirts?
19. What is the word form of the number 602,107?

Number Patterns

I Can make, describe, and extend patterns.

Florida's B.E.S.T.

Algebraic Reasoning 4.AR.3.1, 4.AR.3.2 - Mathematical Thinking \& Reasoning MTR.2.1, MTR.3.1, MTR.4.1, MTR.5.1, MTR.7.1

UNLOCK the Problem

Miksa is making a pattern for a quilt. The pattern shows 40 squares. Every fourth square is blue. How many blue squares are in the pattern?

A pattern is an ordered set of numbers or objects. Each number or object in the pattern is called a term.

Activity find a pattern.

Materials \quad color pencils
Shade the squares that are blue.

	1	2	3	4	5	6	7	8	9	10	
	11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30		
31	32	33	34	35	36	37	38	39	40		

Which squares are blue? \qquad
So, there are \qquad blue squares in the pattern.

1. What patterns do you see in the arrangement of the blue squares?
2. What patterns do you see in the numbers of the blue squares?

Example Extend a pattern.

The rule for a pattern is $a d d 5$. The first term in the pattern is 5 .
(A) Use the rule to extend the pattern.

5, 10, 15, 20, \qquad —, \qquad , \qquad , ...
(B) Describe other patterns in the numbers.

What do you notice about the digits in the ones place?
\qquad
\qquad
Describe the pattern using the words odd and even.
\qquad
\qquad
Describe the pattern using the word multiples.
\qquad
\qquad

Try This! Make a pattern.

To make a pattern, you need the first term and the rule. The rule for the pattern is add 3, subtract 1 . The first term in the pattern is 6 .

Describe another pattern in the numbers.
\qquad
\qquad
\qquad

Share and Show moth

1. Describe a pattern.
$4,8,16,32,64, \ldots$
Rule: \qquad .

MTR Use patterns and 5.1 structure.

How do you use the first term in a pattern to find the next term?2. Use the rule to make the pattern.

Rule: Subtract 10. First Term: 100
100, \qquad , \qquad , \qquad , \qquad , ...
3. Identify a rule. Use it to extend the pattern.
$12,18,24,30$, \qquad , \qquad , \qquad ,

On Your Own

4. Describe a pattern.
$3,10,17,24,31,38,45, \ldots$
Rule: \qquad .
5. Use the rule to make the pattern.

Rule: Add 2, add 1. First Term: 12
12, \qquad , \qquad
\qquad
\qquad , \qquad , \qquad , ...
6. Identify a rule. Use it to extend the pattern.
$56,51,46,41,36$, \qquad , \qquad , \qquad ,
7. MTR Zuza likes to collect stickers, but she also likes to give them away. Currently, Zuza has 87 stickers in her collection. If Zuza collects 5 new stickers each week and gives away 3 stickers each week, how many stickers will Zuza have in her collection after 5 weeks?

Problem Solving • Applications Reald

8. John is saving for his trip to see the Alamo. He started with $\$ 24$ in his savings
 on the Spot account. Every week he earns $\$ 15$ for baby-sitting. Out of that, he spends $\$ 8$ and saves the rest. John uses the rule add 7 to find out how much money he has at the end of each week. What are the first 8 numbers in the pattern?

Pose a Problem

10. An activity at the Math Fair shows two charts.

Numbers
2
3
5
6
10

Use at least two of the numbers and an operation from the charts to write a pattern problem. Include the first five terms of your pattern in the solution to your problem.
9. Draw a check under the column that describes the number.

	Prime	Composite
81		
29		
31		
62		

Solve your problem.

- Describe other patterns in the terms you wrote.

Number Patterns

Go Online

Interactive Examples

Use the rule to extend the pattern.

1. Rule: Add 8.

First term: 5
Think: Add 8.

5, \qquad , \qquad
\qquad , \qquad , ...
2. Describe a pattern.
$4,19,9,24,14,29,19,34,24,39,29,44, \ldots$
Rule: \qquad .
3. Use the rule to make the pattern.

Rule: Subtract 7. First Term: 95
95, \qquad , \qquad
\qquad
\qquad , \qquad , \qquad , ...
4. Identify a rule. Use it to extend the pattern.

54, 63, 72, \qquad , \qquad , \qquad , \qquad

Problem Solving Reâd

5. Bella is making a bead necklace. She strings 1 white bead, then 3 blue beads, then 1 white bead, and so on. Write the numbers for the first eight beads that are white. What is a rule for the pattern?
6. An artist is arranging tiles in rows to decorate a wall. Each new row has 2 fewer tiles than the row below it. If the first row has 23 tiles, how many tiles will be in the seventh row?
\qquad
\qquad
7. WRITE Math Give an example of a rule for a pattern. List a set of numbers that fit the pattern.
\qquad

Lesson Check

8. The rule for a pattern is add 6 . The first term is 5 . Write the first five terms in the pattern.

Spiral Review

10. To win a game, Idris needs to score 2,000 points. So far, he has scored 837 points. How many more points does Idris need to score?
11. Pat listed all the numbers that have 15 as a multiple. Write the numbers in Pat's list.
12. What are the next two terms in the pattern $3,6,5,10,9,18,17, \ldots$?
13. Lia wants to use mental math to find 7×53. Write an expression she could use.
\qquad
14. Complete the following sentence using the correct term.

14 is a \qquad of 7 and 14 .

Chapter Review

1. List all the factors of the number.

14: \qquad
2. Select the numbers that are a factor of 12 . Mark all that apply.
(A) 12
(D) 2
(B) 24
(E) 3
(C) 6
(F) 7
3. Jackson was making a poster for his room. He arranged 50 trading cards in the shape of a rectangle on the poster. For Problems 3a-3e, choose Yes or No to tell whether a possible arrangement of cards is shown.
3a. 5 rows of 10 cards
O Yes
O No

3b. 25 rows of 25 cards
O Yes
\bigcirc No
3c. 25 rows of 2 cards
○ Yes
○ No
3d. 50 rows of 1 card
O Yes
\bigcirc No
3e. 45 rows of 5 cards

- Yes
\bigcirc No

4. List all the factor pairs in the table.

Go Online
5. Classify the numbers. Some numbers may belong in more than one box.

Divisible by 5 and 9	Divisible by 6 and 9	Divisible by 2 and 6

6. Write the rule shown by the pattern in the numbers.
$6,10,14,18,22,26,30, \ldots$
Rule: \qquad
7. Brady has a card collection with 64 basketball cards, 32 football cards, and 24 baseball cards. He wants to arrange the cards in equal piles, with only one type of card in each pile. How many cards can he put in each pile? Mark all that apply.
(A) 1
(B) 2
(C) 3
(D) 4
(E) 8
(F) 32
8. The Garden Club is designing a garden with 24 cosmos, 32 pansies, and 36 marigolds. Each row will have only one type of plant. Juan says he can put 6 plants in each row. He listed the factors of 24,32 , and 36 below to support his reasoning.

24: 1, 2, 3, 4, 6, 8, 12, 24
32: 1, 2, 4, 6, 9, 16, 32
36: 1, 2, 3, 4, 6, 8, 12, 18, 36
Is he correct? Explain your answer. If his reasoning is incorrect, explain how he should have found the answer.
\square
\qquad
9. The number of pieces of art at a museum is shown in the table.

Art	
Type of Art	Number of Pieces
Oil paintings	30
Photographs	24
Sketches	21

Part A

The museum is hosting a show in July that features the oil paintings by different artists. All artists show the same number of paintings, and each will show more than 1 painting. How many artists could be featured in the show?
\qquad

Part B

The museum wants to display all the art pieces in rows. Each row has the same number of pieces and the same type of art. How many pieces could be in each row? Explain how you found your answer.
\square
10. Charles was skip counting at the Math Club meeting. He counted $8,16,24,32,40$, and 48 . Extend the pattern by three more numbers.
11. Sofia wrote the number 40. If her rule is add 7, what is the fourth number in Sofia's pattern? Do you see another number pattern?
\square
12. For Problems 12a-12e, select True or False for each statement.

12a. The number 36 is a multiple of 9 .
O True

- False

12b. The number 3 is a multiple of 9 .

- True
- False

12c. The number 54 is a multiple of 9 .TrueFalse
12d. The number 3 is a factor of 9 .
O True
\bigcirc False
12e. The number 27 is a factor of 9 .True
O False
13. What multiple of 7 is also a factor of 7 ?
14. Manny makes dinner using 1 box of pasta and 1 jar of sauce. If pasta is sold in packages of 6 boxes and sauce is sold in packages of 3 jars, what is the least number of dinners that Manny can make without any supplies left over?
\qquad dinners
15. Serena has several packages of raisins. Each package contains 3 boxes of raisins. Which could be the number of boxes of raisins Serena has? Mark all that apply.
(A) 9
(B) 18
(C) 23
(D) 27
(E) 32
16. Choose the words that make the sentence true.

The number 7 is \begin{tabular}{c|c|}
\hline prime

composite

 because it has

exactly

more than
\end{tabular} two factors.

\qquad
17. Li wrote the following riddle: I am a number between 20 and 60. My ones digit is three more than my tens digit. I am a prime number.

Part A

What number does Li's riddle describe? Explain.
\square

Part B

Li's friend Marco guessed that her riddle was about the number 41. Why can't 41 be the answer to Li's riddle? Explain.
\square
18. Classify the numbers as prime or composite.

Prime	Composite	37	65\quad

19. Erica knits 18 squares on Monday. Each day, she knits 7 more squares than the day before. How many squares does Erica knit on Friday?
\qquad squares
20. Use the rule to write the first five terms of the pattern.

Rule: Add 10, subtract $5 \quad$ First term: 11
21. Elina had 10 tiles to arrange in a rectangular design. She drew a model of the rectangles she could make with the 10 tiles.

Part A

How does Elina's drawing show that the number 10 is a composite number?
\square

Part B

Suppose Elina used 15 tiles to make the rectangular design. How many different rectangles could she make with the 15 tiles? Write a list or draw a picture to show the number and dimensions of the rectangles she could make.
\square

Part C

Elina's friend Ahmad said that he could make more rectangles with 24 tiles than with Elina's 10 tiles. Is Ahmad correct? Explain.
\square

