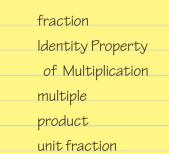

Multiply Fractions by Whole Numbers

Show What You Know

GO

Online


Chapter

Vocabulary Builder

Complete the bubble map using the review words.

multiplication

Review Words

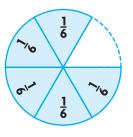
- 1. A _____ can name a part of a group or a whole.
- **2.** You can write ______ of 10 such as 10, 20, 30, and so on.
- 3. _____ have one as the numerator.
- 4. The answer to a multiplication problem is called the

How many slices of pizza were

What fraction of the pizza is 1

eaten?

slice?


Multiples of Unit Fractions

Essential Question How can you write a fraction as a product of a whole number and a unit fraction?

WILOCK the Problem

At a pizza party, each pizza was cut into 6 equal slices. At the end of the party, there was $\frac{5}{6}$ of a pizza left. Roberta put each of the leftover slices in its own freezer bag. How many bags did she use? What part of a pizza did she put in each bag?

Example Write $\frac{5}{6}$ as the product of a whole number and a unit fraction.

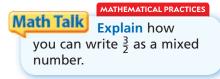
The picture shows $\frac{5}{6}$ or

____ sixth-size parts.

Each sixth-size part of the pizza can be shown by the

unit fraction _____.

You can use unit fractions to show $\frac{5}{6}$ in two ways.

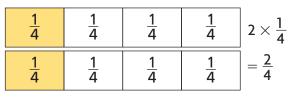

The number of addends, or the multiplier, represents the number of bags used.

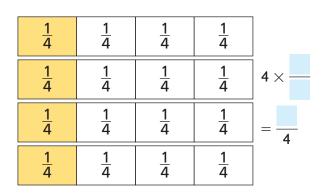
The unit fractions represent the part of a pizza in each bag.

So, Roberta used	_ bags. She put	_ of a pizza
in each bag.		

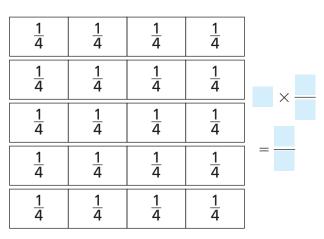
• Explain how you can write $\frac{3}{2}$ as the product of a whole number and a unit fraction.

Remember You can use multiplication to show repeated addition. 3 × 4 means 4 + 4 + 4. 4 × 2 means 2 + 2 + 2 + 2.

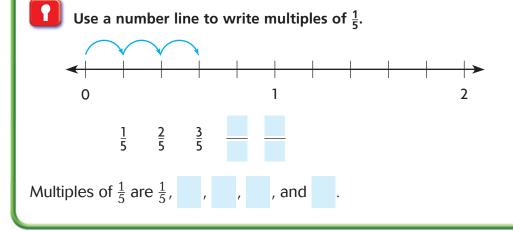


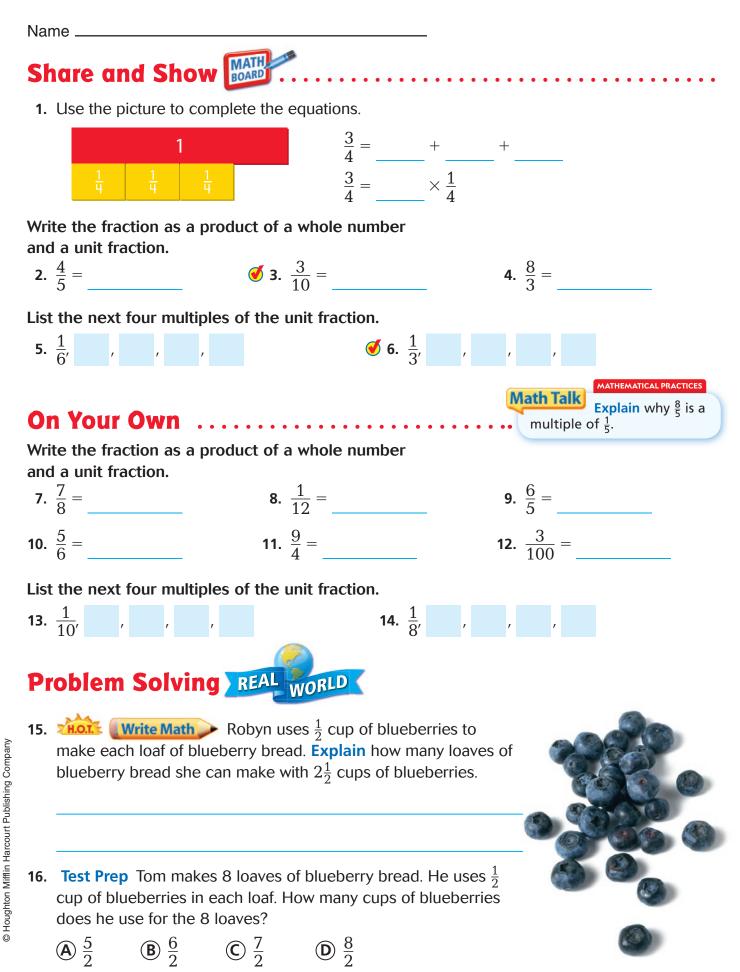

Multiples The product of a number and a counting number is a multiple of the number. You have learned about multiples of whole numbers.

The products 1×4 , 2×4 , 3×4 , and so on are multiples of 4. The numbers 4, 8, 12, and so on are multiples of 4.

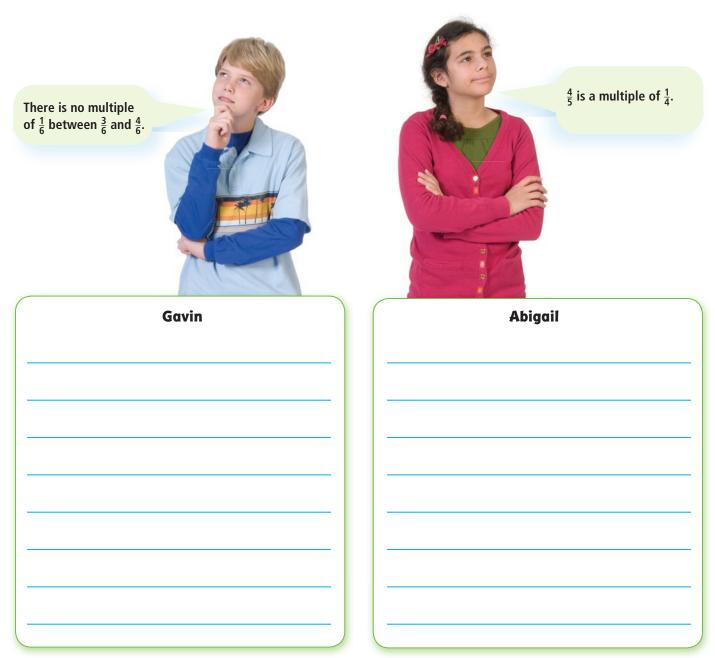

You can also find multiples of unit fractions.

1 × $\frac{1}{4}$ is $\frac{1}{4}$. Use models to write the next four multiples of $\frac{1}{4}$. Complete the last model.




$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>1</u> 4	<u>1</u> 4	<u>1</u> 4	<u>1</u> 4	3×
$\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4}$	<u>1</u> 4	$\frac{1}{4}$	<u>1</u> 4	$\frac{1}{4}$	
	<u>1</u> 4	<u>1</u> 4	<u>1</u> 4	<u>1</u> 4	=

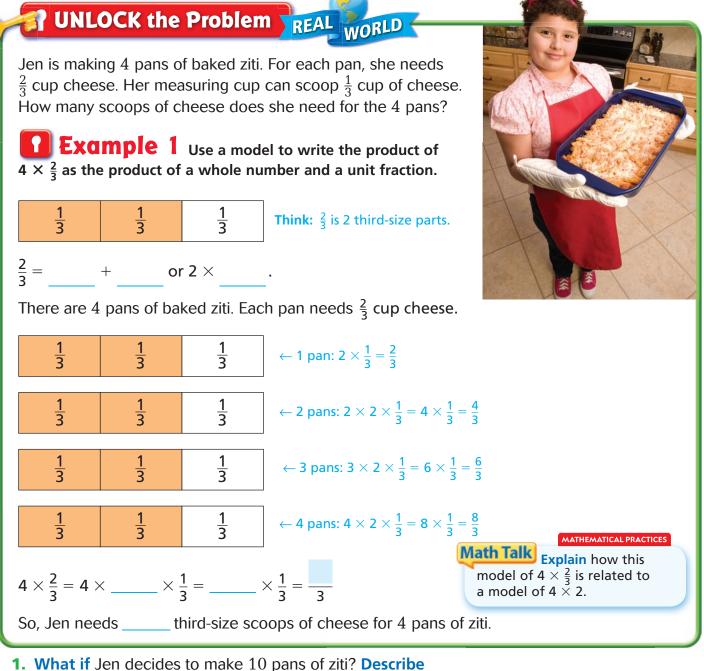
Multiples of $\frac{1}{4}$ are $\frac{1}{4}$, , , , and



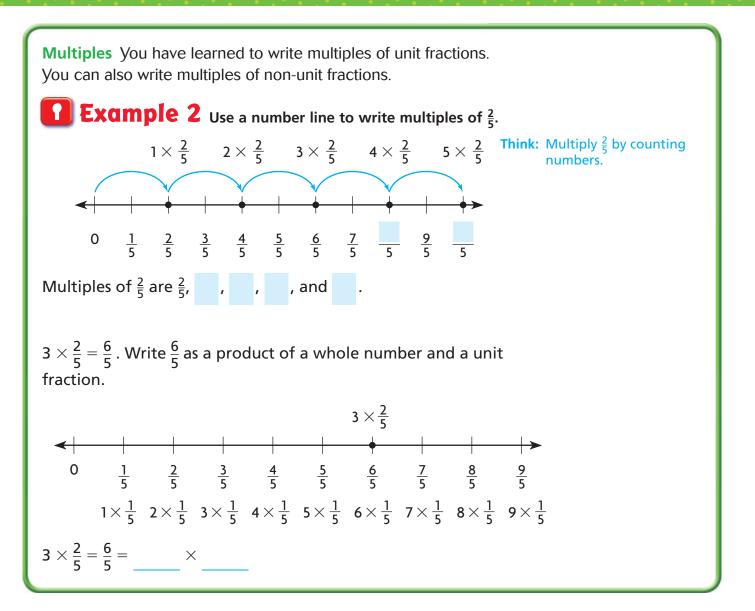
O Houghton Mifflin Harcourt Publishing Company

Sense or Nonsense?

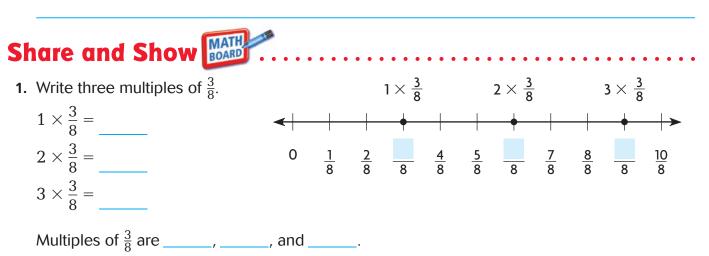
17. Whose statement makes sense? Whose statement is nonsense? Explain your reasoning.

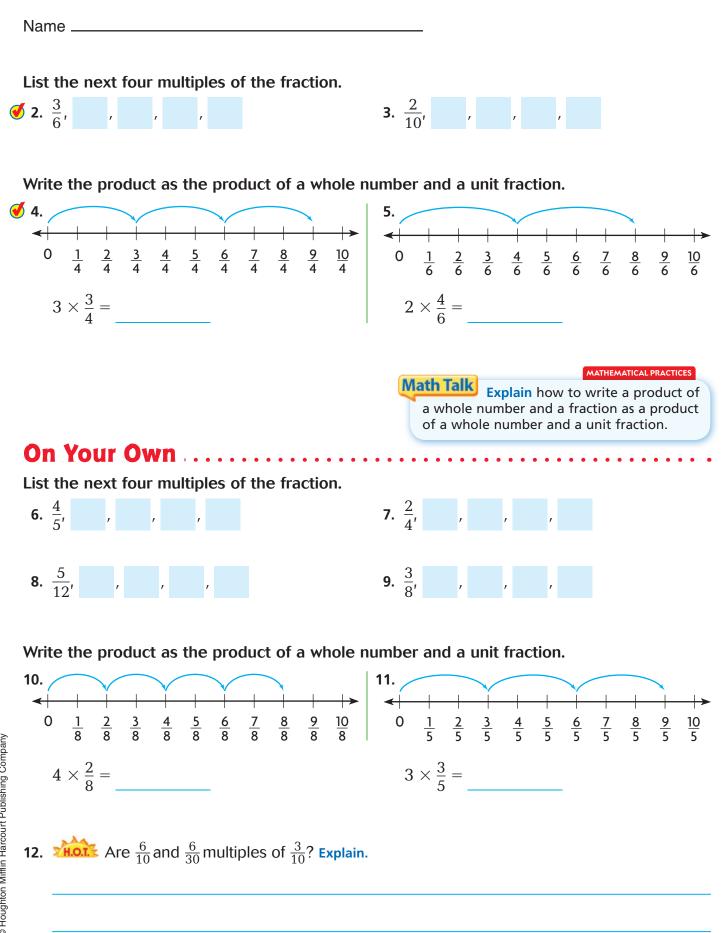

• For the statement that is nonsense, write a new statement that makes sense.

Lesson 8.2


Name _

Multiples of Fractions


Essential Question How can you write a product of a whole number and a fraction as a product of a whole number and a unit fraction?



 What if Jen decides to make 10 pans of ziti? Describ a pattern you could use to find the number of scoops of cheese she would need.

2. Explain how to use repeated addition to write the multiple of a fraction as the product of a whole number and a unit fraction.

Company Company Company

	UNLOCK the Problem REAL		HOM TO THE THOUGH THE WAY WAY A MANUTANCE TO THE TO THE TANK
	Josh is watering his plants. He gives each a $\frac{3}{5}$ pint of water. His watering can holds $\frac{1}{5}$ pi times will he fill his watering can to water b	of 2 plants nt. How many	
a.	What do you need to find?		
b.	What information do you need to use?		
C.	How can drawing a model help you solve t	he problem?	
d.	Show the steps you use to solve the problem.		e the sentence. fill his watering can times.
14.	What is $\frac{5}{12}$ written as a product of a whole number and a unit fraction?	 15. Test Prep (A) 5/12 (B) 10/12 	• Which is a multiple of $\frac{5}{6}$? • \mathbf{C} $\frac{10}{5}$ • \mathbf{D} $\frac{10}{6}$

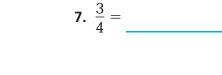
Vocabulary

Choose the best term from the box.

- 1. A ______ of a number is the product of the number and a counting number. (p. 316)
- 2. A ______ always has a numerator of 1. (p. 314)

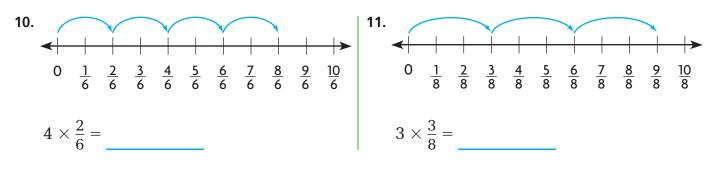
Concepts and Skills

List the next four multiples of the unit fraction.


Write the fraction as a product of a whole number and a unit fraction.

5. $\frac{4}{10} =$ **6.** $\frac{8}{12} =$

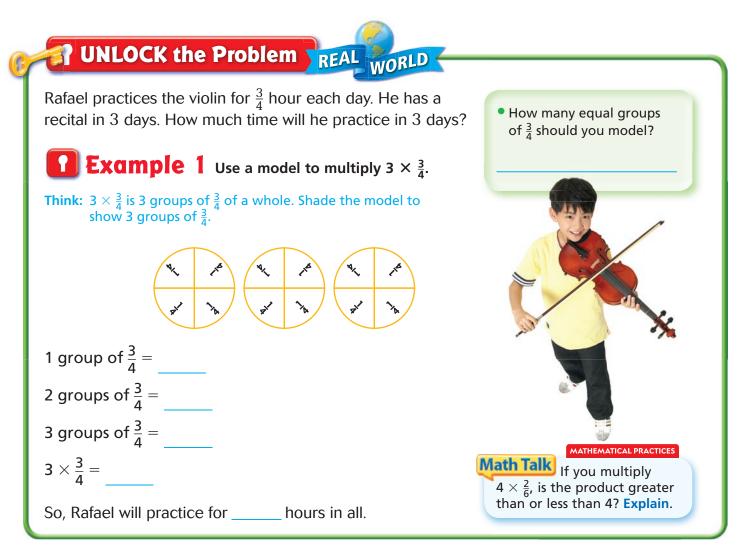
Vocabulary


multiple

product

unit fraction

Write the product as the product of a whole number and a unit fraction.

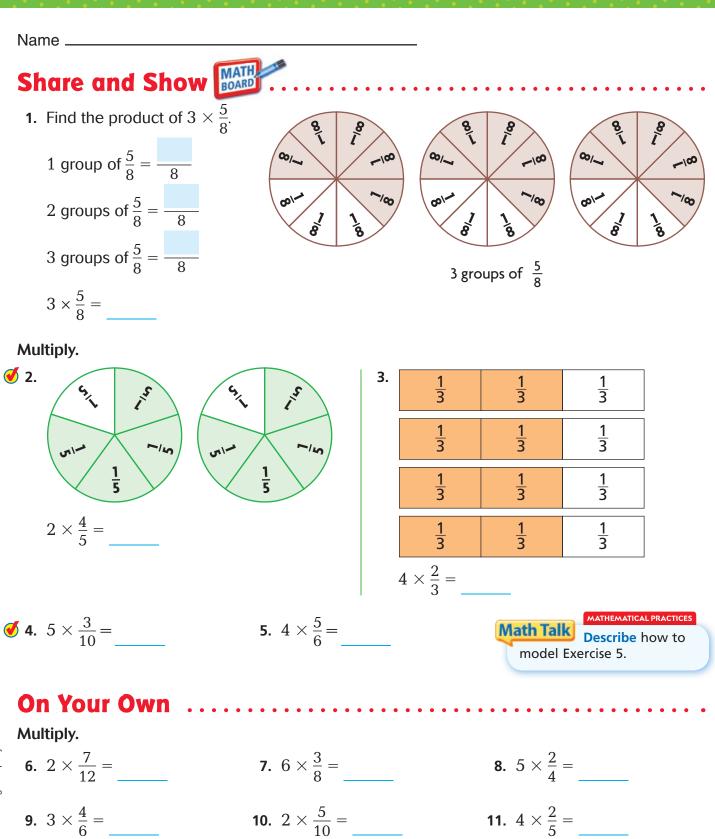

Fill in the bubble completely to show your answer.

- 12. Pedro cut a sheet of poster board into 10 equal parts. His brother used some of the poster board and now $\frac{8}{10}$ is left. Pedro wants to make a sign from each remaining part of the poster board. How many signs can he make?
 - **(A)** 1
 - **B** 2
 - **(C)** 8
 - **D** 10
- **13.** Ella is making 3 batches of banana milkshakes. She needs $\frac{3}{4}$ gallon of milk for each batch. Her measuring cup holds $\frac{1}{4}$ gallon. How many times will she need to fill the measuring cup to make all 3 batches of milkshakes?
 - **A** 3
 - **B** 4
 - **(C)** 6
 - **D** 9
- 14. Darren cut a lemon pie into 8 equal slices. His friends ate some of the pie and now $\frac{5}{8}$ is left. Darren wants to put each slice of the leftover pie on its own plate. What part of the pie will he put on each plate?
 - (A) $\frac{1}{8}$ (B) $\frac{3}{8}$ (C) $\frac{5}{8}$ (D) $\frac{8}{8}$
- **15.** Beth is putting liquid fertilizer on the plants in 4 flowerpots. Her measuring spoon holds $\frac{1}{8}$ teaspoon. The directions say to put $\frac{5}{8}$ teaspoon of fertilizer in each pot. How many times will Beth need to fill the measuring spoon to fertilize the plants in the 4 pots?
 - **A** 4
 - **B** 8
 - **(C)** 20
 - **D** 32

Name .

Multiply a Fraction by a Whole Number Using Models

Essential Question How can you use a model to multiply a fraction by a whole number?


- **1. Explain** how you can use repeated addition with the model to find the product of $3 \times \frac{3}{4}$.
- C Houghton Mifflin Harcourt Publishing Company
- **2.** Rafael's daily practice of $\frac{3}{4}$ hour is in sessions that last for $\frac{1}{4}$ hour each. **Describe** how the model shows the number of practice sessions Rafael has in 3 days.

Example 2 Use a pattern to multiply.

You know how to use a model and repeated addition to multiply a fraction by a whole number. Look for a pattern in the table to discover another way to multiply a fraction by a whole number.

Multiplication Problem	Whole Number (Number of Groups)	Fraction (Size of Groups)	Product	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$\frac{1}{6}$ of a whole	<u>2</u> 6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$\frac{2}{6}$ of a whole	<mark>4</mark> 6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$\frac{3}{6}$ of a whole	<u>6</u> 6	
When you multiply a fraction by a whole number, the numerator in the product is the product of the and the of the fraction. The denominator in the product is the same as the of the fraction.				

- **3. Summarize** How do you multiply a fraction by a whole number without using a model or repeated addition?
- **4.** Describe two different ways to find the product of $4 \times \frac{2}{3}$.

H.O.T. Algebra Write the unknown number.

12. $\times \frac{2}{3} = \frac{12}{3}$ **13.** $5 \times \frac{10}{4} = \frac{10}{4}$ **14.** $2 \times \frac{7}{10} = \frac{14}{8}$

UNLOCK the Problem REAL	WORLD
15. Lisa makes clothes for pets. She needs $\frac{5}{6}$ ye to make 1 dog coat. How much fabric does make 3 dog coats?	ard of fabric
(A) $\frac{8}{6}$ yard (C) $\frac{24}{6}$ yards	
(B) $\frac{15}{6}$ yards (D) 15 yards	
a. What do you need to find?	
 b. What information do you need? c. Show the steps you use to solve the proble 	em.
d. Complete the sentence.	e. Fill in the bubble for the correct answer
Lisa needs yards of fabric to make 3 dog coats.	choice.

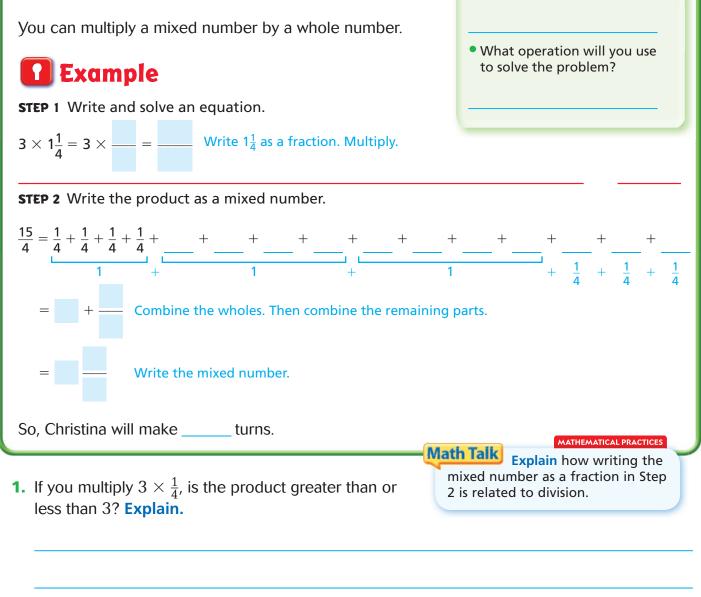
13

- **16.** Manuel's dog eats $\frac{3}{4}$ bag of dog food in 1 month. How many bags of dog food does Manuel's dog eat in 6 months?
 - (A) 9 bags (B) $\frac{24}{4}$ bags (C) $\frac{18}{4}$ bags (D) $\frac{9}{4}$ bags

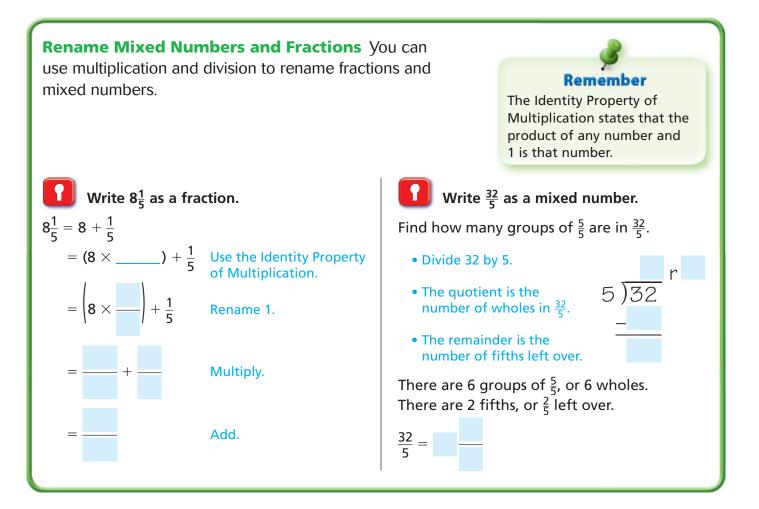
- **17.** Carla walks her dog $\frac{2}{3}$ mile every day. How far does she walk her dog in 7 days?
 - (A) 14 miles (B) $\frac{9}{3}$ miles (C) $\frac{21}{7}$ miles (D) $\frac{14}{3}$ miles

Will Christina make more

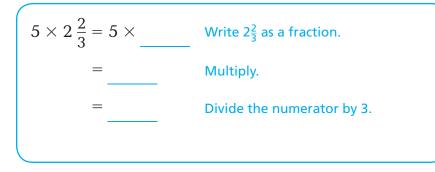
or less than $1\frac{1}{4}$ turns in 3

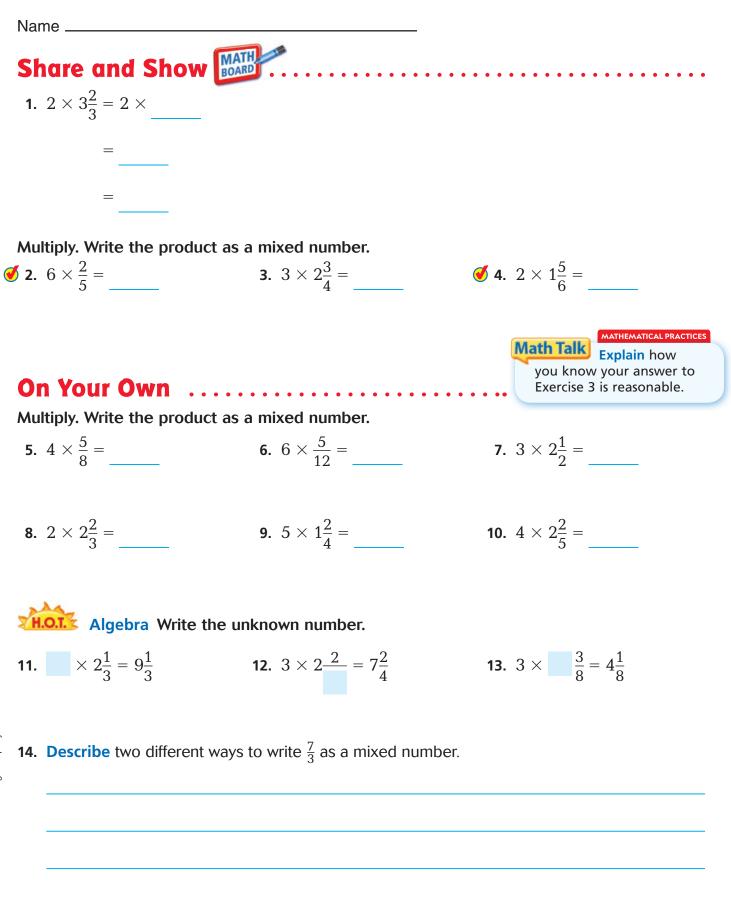

measures of music?

Multiply a Fraction or Mixed Number by a Whole Number


Essential Question How can you multiply a fraction by a whole number to solve a problem?

UNLOCK the Problem REAL WORLD


Christina is planning a dance routine. At the end of each measure of music, she will make a $1\frac{1}{4}$ turn. How many turns will she make after the first 3 measures of music?


2. Explain how you can tell that $3 \times 1\frac{1}{4}$ is greater than 3 without finding the exact product.

Try This! Find $5 \times 2\frac{2}{3}$. Write the product as a mixed number.

- **3. Explain** why your solution to $5 \times 2\frac{2}{3} = 13\frac{1}{3}$ is reasonable.
- **4.** Sense or Nonsense? To find $5 \times 2\frac{2}{3}$, Dylan says he can find $(5 \times 2) + (5 \times \frac{2}{3})$. Does this make sense? Explain.

C Houghton Mifflin Harcourt Publishing Company

Problem Solving REAL WORLD

Use the recipe for 15–18.

- **15.** Otis plans to make 3 batches of sidewalk chalk. How much plaster of Paris does he need?
- **16. What's the Question?** The answer is $\frac{32}{3}$.
- Write Math Patty has 2 cups of warm water. Is that enough water to make 4 batches of sidewalk chalk?
 Explain how you know without finding the exact product.
- **18. Pose a Problem** Look back at Problem 15. Change the number and write a similar problem.

19. What's the Error? Brian says that $4 \times \frac{2}{5} = \frac{2}{5} + \frac{2}{5} + \frac{2}{5}$. **Describe** and correct his error.

- **20.** Test Prep Linda's favorite movie is $2\frac{1}{4}$ hours long. She watched the movie 3 times last week. How many hours did she watch the movie?
 - (A) $\frac{3}{4}$ hour (
- C 6 hours
 - **(B)** $1\frac{1}{3}$ hours **(D)** $6\frac{3}{4}$ hours

332 FOR MORE PRACTICE: Standards Practice Book, pp. P163–P164

Sidewalk Chalk Recipe

- $\frac{3}{4}$ cup warm water
- $1\frac{1}{2}$ cups plaster of Paris
- $2\frac{2}{3}$ tablespoons powdered paint

O Houghton Mifflin Harcourt Publishing Company

Problem Solving • Comparison Problems with Fractions

Essential Question How can you use the strategy *draw a diagram* to solve comparison problems with fractions?

UNLOCK the Problem REAL

WORLD

The deepest part of the Grand Canyon is about $1\frac{1}{6}$ miles deep. The deepest part of the ocean is located in the Mariana Trench, in the Pacific Ocean. The deepest part of the ocean is almost 6 times as deep as the deepest part of the Grand Canyon. About how deep is the deepest part of the ocean?

Read the Problem	Solve the Problem		
What do I need to find? I need to find	Draw a bar model. Compare the depth of the deepest part of the Grand Canyon and the deepest part of the ocean, in miles.		
	$1\frac{1}{6}$		
What information do I need to use?	m		
The deepest part of the Grand	Write an equation and solve.		
Canyon is about miles deep. The deepest part of the	<i>m</i> is the deepest part of, in miles.		
ocean is about times	m = Write an equation.		
as deep.	<i>m</i> = Write the mixed number as a fraction.		
How will I use the information?	m = Multiply.		
I can to compare the depths.	m = Write the fraction as a whole number.		

So, the deepest part of the ocean is about _____ miles deep.

Try Another Problem

Mountains are often measured by the distance they rise above sea level. Mount Washington rises more than $1\frac{1}{10}$ miles above sea level. Mount Everest rises about 5 times as high. About how many miles above sea level does Mount Everest rise?

Read the Problem	Solve the Problem
What do I need to find?	
What information do I need to use?	
How will I use the information?	

So, Mount Everest rises about _____ miles above sea level.

How did drawing a diagram help you solve the problem? •

MATHEMATICAL PRACTICES

Math Talk Explain how you could use the strategy act *it out* to find the height of Mount Everest.

Name

Share and Show

1. Komodo dragons are the heaviest lizards on earth. A baby Komodo dragon is $1\frac{1}{4}$ feet long when it hatches. Its mother is 6 times as long. How long is the mother?

First, draw a bar model to show the problem.

✓ Use the Problem-Solving MathBoard.

Underline the important facts.

SHOW YOUR WORK

Then, write the equation you need to solve.

Finally, find the length of the mother Komodo dragon.

The mother Komodo dragon is _____ feet long.

- 2. What if a male Komodo dragon is 7 times as long as the baby Komodo dragon? How long is the male? How much longer is the male than the mother?
- ✓ 3. The smallest hummingbird is the Bee hummingbird. It has a mass of about 1¹/₂ grams. A Rufous hummingbird's mass is 3 times the mass of the Bee hummingbird. What is the mass of a Rufous hummingbird?

4. Sloane needs $\frac{3}{4}$ hour to drive to her grandmother's house. It takes her 5 times as long to drive to her cousin's house. How long does it take to drive to her cousin's house? On Your Own...

Use the table for 5 and 6.

Payton has a variety of flowers in her garden. The table shows the average height of the flowers.

Flower	Height
tulip	1 ¹ / ₄ feet
daisy	2 ¹ / ₂ feet
tiger lily	3 ¹ / ₃ feet
sunflower	$7\frac{3}{4}$ feet

- 5. What is the difference between the tallest flower and the shortest flower in Payton's garden?
- Write Math Payton says her average sunflower is
 7 times the height of her average tulip. Do you agree or disagree with her statement? Explain your reasoning.

- 7. Miguel ran $1\frac{3}{10}$ miles on Monday. He wants to increase the distance he runs each day, so that on Friday he runs 3 times the distance he did on Monday. How far will Miguel run on Friday?
- 8. Test Prep Jack bought $1\frac{3}{4}$ pounds of cheese for a platter. He bought 3 times as much deli meat as cheese. How many pounds of deli meat did Jack buy?
 - (A) $1\frac{5}{4}$ pounds
 - **B** 5 pounds
 - $\bigcirc 5\frac{1}{4}$ pounds
 - D 7 pounds

Draw a Diagram Find a Pattern Make a Table or List Solve a Simpler Problem

Name _

Vocabulary

Choose the best term from the box.

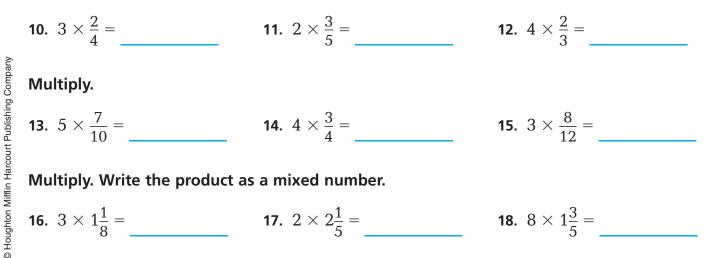
- 1. A _____ can name part of a whole or part of a group. (p. 316)
- 2. A _____ of a number is the product of the number and a counting number. (p. 316)

Concepts and Skills

List the next four multiples of the unit fraction.

Write the fraction as a product of a whole number and a unit fraction.

9. $\frac{2}{3'}$, ,


List the next four multiples of the fraction.

8. $\frac{3}{10'}$, , ,

Assessment Options Chapter Test

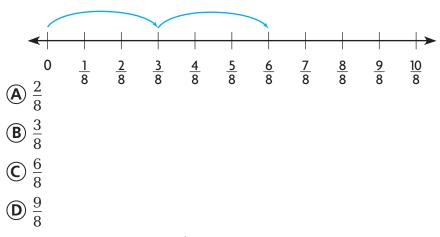
Online

Write the product as the product of a whole number and a unit fraction.

Vocabulary			
fraction			
multiple			
product			

Chapter 8 337

Fill in the bubble completely to show your answer.


- **19.** Bryson has soccer practice for $2\frac{1}{4}$ hours 2 times a week. How much time does Bryson spend at soccer practice in 1 week?
 - (A) 2 hours
 - **B** 4 hours
 - (C) $4\frac{2}{4}$ hours (D) $8\frac{2}{4}$ hours
- **20.** Nigel cut a loaf of bread into 12 equal slices. His family ate some of the bread and now $\frac{5}{12}$ is left. Nigel wants to put each of the leftover slices in its own bag. How many bags does Nigel need?
 - **A** 5
 - **B** 7
 - **(C)** 12
 - **D** 17
- **21.** Micala made a list of some multiples of $\frac{3}{5}$. Which could be Micala's list?
- **22.** Lincoln spent $1\frac{1}{4}$ hours reading a book. Phoebe spent 3 times as much time as Lincoln reading a book. How much time did Phoebe spend reading?

(A)
$$1\frac{1}{16}$$
 hours
(B) $3\frac{1}{4}$ hours
(C) $3\frac{3}{4}$ hours
(D) $4\frac{1}{4}$ hours

Name	

Fill in the bubble completely to show your answer.

23. Griffin used a number line to write the multiples of $\frac{3}{8}$. Which multiple on the number line shows the product $2 \times \frac{3}{8}$?

24. Serena's rabbit weighs $3\frac{1}{2}$ pounds. Jarod's rabbit weighs 3 times as much as Serena's rabbit. How much does Jarod's rabbit weigh?

(A)
$$3\frac{1}{6}$$
 pounds
(B) $7\frac{1}{6}$ pounds
(C) $9\frac{1}{2}$ pounds

1

(D)
$$10\frac{1}{2}$$
 pounds

25. Jacadi is setting up a tent. Each section of a tent pole is $\frac{2}{3}$ yard long. She needs 4 sections to make 1 pole. How long is 1 tent pole?

(A)
$$\frac{12}{3}$$
 yards
(B) $\frac{8}{3}$ yards

C 8 yards

(D)
$$\frac{4}{3}$$
 yards

Constructed Response

26. Oliver has music lessons Monday, Wednesday, and Friday. Each lesson is $\frac{3}{4}$ hour. Oliver says he will have lessons for $2\frac{1}{2}$ hours this week. Do you agree or disagree? **Explain** your reasoning.

Performance Task

- **27.** The common snapping turtle is a freshwater turtle. It can grow to about $1\frac{1}{6}$ feet long. The leatherback sea turtle is the largest of all sea turtles. The average length of a leatherback is about 5 times as long as a common snapping turtle.
- Oraw a diagram to compare the lengths of the turtles. Then write an equation to find the length of a leatherback. Explain how the diagram helps you write the equation.

B About how long is the leatherback sea turtle? _____

A loggerhead sea turtle is about 3 times as long as the common snapping turtle. How long is the loggerhead?
 Explain your answer.