Chapter
 \& Multiply ractions by Whole Jumbers

Show What You Know

Check your understanding of important skills.
Name \qquad

Relate Addition to Multiplication Complete.
1.

2.

\qquad \times \qquad $=$ \qquad

Read and Write Mixed Numbers Write a mixed number for the shaded part. Write a fraction for the unshaded part.
3.

Shaded: \qquad

Unshaded: \qquad
4.

Shaded: \qquad

Unshaded: \qquad

Model Fractions and Mixed Numbers Write a fraction or

 mixed number for the model.
6.

The budget for Carter Museum's annual party is $\$ 10,000$. Food accounts for $\frac{1}{2}$ of the budget, beverages for $\frac{1}{4}$, and decorations for $\frac{1}{10}$ of the budget. The remainder is spent on staffing the party. Be a Math Detective. How much money is spent on staffing the party?

Vocabulary Builder

Visualize It .

Complete the bubble map using the review words.

Review Words

fraction

Identity Property of Multiplication multiple
product
unit fraction

Understand Vocabulary

Write the word or phrase that matches the description.

1. A \qquad can name a part of a group or a whole.
2. You can write \qquad of 10 such as 10,20 , 30 , and so on.
3. \qquad have one as the numerator.
4. The answer to a multiplication problem is called the
\qquad -
5. \qquad states that
the product of any number and 1 is that number.
\qquad

Multiples of Unit Fractions

Essential Question How can you write a fraction as a product
of a whole number and a unit fraction?

UNLOCK the Problem REAL WORLD

At a pizza party, each pizza was cut into 6 equal slices. At the end of the party, there was $\frac{5}{6}$ of a pizza left. Roberta put each of the leftover slices in its own freezer bag. How many bags did she use? What part of a pizza did she put in each bag?

P Example write $\frac{5}{6}$ as the product of a whole number and a unit fraction.

```
- How many slices of pizza were eaten?
```

- What fraction of the pizza is 1 slice?

The picture shows $\frac{5}{6}$ or
\qquad sixth-size parts.

Each sixth-size part of the pizza can be shown by the unit fraction \qquad .

You can use unit fractions to show $\frac{5}{6}$ in two ways.
$\frac{5}{6}=$ \qquad $+\quad+$ \qquad $+$ \qquad $\frac{5}{6}=\quad \times \frac{1}{6}$

The number of addends, or the multiplier, represents the number of bags used.

Remember

You can use multiplication to show repeated addition.
3×4 means $4+4+4$.
4×2 means $2+2+2+2$.

Math Talk
MATHEMATICAL PRACTICES
Explain how you can write $\frac{3}{2}$ as a mixed number.

The unit fractions represent the part of a pizza in each bag.
So, Roberta used \qquad bags. She put \qquad of a pizza in each bag.

- Explain how you can write $\frac{3}{2}$ as the product of a whole number and a unit fraction.

Multiples The product of a number and a counting number is a multiple of the number. You have learned about multiples of whole numbers.

The products $1 \times 4,2 \times 4,3 \times 4$, and so on are multiples of 4 .
The numbers $4,8,12$, and so on are multiples of 4 .
You can also find multiples of unit fractions.
? $1 \times \frac{1}{4}$ is $\frac{1}{4}$. Use models to write the next four multiples of $\frac{1}{4}$. Complete the last model.

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Multiples of $\frac{1}{4}$ are $\frac{1}{4}$, , , and

P Use a number line to write multiples of $\frac{1}{5}$.

$$
\begin{array}{llll}
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \square
\end{array}
$$

Multiples of $\frac{1}{5}$ are $\frac{1}{5}$, , , and
\qquad

Share and Show

1. Use the picture to complete the equations.

$\frac{3}{4}=$ \qquad
\qquad
$\frac{3}{4}=$ \qquad

$$
\times \frac{1}{4}
$$

Write the fraction as a product of a whole number and a unit fraction.
2. $\frac{4}{5}=$ \qquad 3. $\frac{3}{10}=$ \qquad 4. $\frac{8}{3}=$
\qquad
List the next four multiples of the unit fraction.
5. $\frac{1}{6}$
\checkmark
6. $\frac{1}{3}$

On Your Own

Write the fraction as a product of a whole number and a unit fraction.
7. $\frac{7}{8}=$
8. $\frac{1}{12}=$
9. $\frac{6}{5}=$
10. $\frac{5}{6}=$ \qquad 11. $\frac{9}{4}=$ \qquad 12. $\frac{3}{100}=$
\qquad
\qquad
List the next four multiples of the unit fraction.
13. $\frac{1}{10}$,
, ,
14. $\frac{1}{8}$

Problem Solving REAL wORLD

15. Wro.I. Write Math Robyn uses $\frac{1}{2}$ cup of blueberries to make each loaf of blueberry bread. Explain how many loaves of blueberry bread she can make with $2 \frac{1}{2}$ cups of blueberries.
\qquad
\qquad
16. Test Prep Tom makes 8 loaves of blueberry bread. He uses $\frac{1}{2}$ cup of blueberries in each loaf. How many cups of blueberries does he use for the 8 loaves?
(A) $\frac{5}{2}$
(B) $\frac{6}{2}$
(C) $\frac{7}{2}$
(D) $\frac{8}{2}$

Sense or Nonsense?

17. Whose statement makes sense? Whose statement is nonsense? Explain your reasoning.

- For the statement that is nonsense, write a new statement that makes sense.
\qquad

Multiples of Fractions

Essential Question How can you write a product of a whole number and a fraction as a product of a whole number and a unit fraction?

UNLOCK the Problem REAL WORLD

Jen is making 4 pans of baked ziti. For each pan, she needs $\frac{2}{3}$ cup cheese. Her measuring cup can scoop $\frac{1}{3}$ cup of cheese. How many scoops of cheese does she need for the 4 pans?

Y Example 1 Use a model to write the product of $4 \times \frac{2}{3}$ as the product of a whole number and a unit fraction.

There are 4 pans of baked ziti. Each pan needs $\frac{2}{3}$ cup cheese.

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\leftarrow 1 \text { pan: } 2 \times \frac{1}{3}=\frac{2}{3}$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\leftarrow 2$ pans: $2 \times 2 \times \frac{1}{3}=4 \times \frac{1}{3}=\frac{4}{3}$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\leftarrow 3 \text { pans: } 3 \times 2 \times \frac{1}{3}=6 \times \frac{1}{3}=\frac{6}{3}$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\leftarrow 4 \text { pans: } 4 \times 2 \times \frac{1}{3}=8 \times \frac{1}{3}=\frac{8}{3}$
$4 \times \frac{2}{3}=$			$\frac{1}{3}=\frac{}{3} \quad \begin{aligned} & \text { Math Talk } \begin{array}{l} \text { Explain how this } \\ \text { model of } 4 \times \frac{2}{3} \text { is related to } \\ \text { a model of } 4 \times 2 . \end{array} \end{aligned}$

So, Jen needs \qquad third-size scoops of cheese for 4 pans of ziti.

1. What if Jen decides to make 10 pans of ziti? Describe a pattern you could use to find the number of scoops of cheese she would need.

Multiples You have learned to write multiples of unit fractions.
You can also write multiples of non-unit fractions.
$\left(1\right.$ Example 2 Use a number line to write multiples of $\frac{2}{5}$.

Multiples of $\frac{2}{5}$ are $\frac{2}{5}$, , , and
$3 \times \frac{2}{5}=\frac{6}{5}$. Write $\frac{6}{5}$ as a product of a whole number and a unit fraction.

$$
3 \times \frac{2}{5}
$$

$$
\begin{array}{llllllll}
1 \times \frac{1}{5} & 2 \times \frac{1}{5} & 3 \times \frac{1}{5} & 4 \times \frac{1}{5} & 5 \times \frac{1}{5} & 6 \times \frac{1}{5} & 7 \times \frac{1}{5} & 8 \times \frac{1}{5}
\end{array} \quad 9 \times \frac{1}{5}
$$

$3 \times \frac{2}{5}=\frac{6}{5}=$ \qquad \times
2. Explain how to use repeated addition to write the multiple of a fraction as the product of a whole number and a unit fraction.
\qquad
\qquad

Share and Show MATH

1. Write three multiples of $\frac{3}{8}$.
$1 \times \frac{3}{8}$
$2 \times \frac{3}{8}$
$3 \times \frac{3}{8}$
$1 \times \frac{3}{8}=$ \qquad

$2 \times \frac{3}{8}=$ \qquad $\begin{array}{llllllllllll}0 & \frac{1}{8} & \frac{2}{8} & -8 & \frac{4}{8} & \frac{5}{8} & -8 & \frac{7}{8} & \frac{8}{8} & -8 & \frac{10}{8}\end{array}$ $3 \times \frac{3}{8}=$ \qquad
Multiples of $\frac{3}{8}$ are \qquad and \qquad .

Name \qquad

List the next four multiples of the fraction.
2. $\frac{3}{6}$,
3. $\frac{2}{10}$,

Write the product as the product of a whole number and a unit fraction.
$\checkmark 4$

$3 \times \frac{3}{4}=$ \qquad

$2 \times \frac{4}{6}=$ \qquad

Math Talk

MATHEMATICAL PRACTICES
Explain how to write a product of a whole number and a fraction as a product of a whole number and a unit fraction.

On Your Own

List the next four multiples of the fraction.
6. $\frac{4}{5}$
7. $\frac{2}{4}$
8. $\frac{5}{12}$,
9. $\frac{3}{8}$

Write the product as the product of a whole number and a unit fraction.
10.

$4 \times \frac{2}{8}=$ \qquad

$3 \times \frac{3}{5}=$ \qquad
12.

UNLOCK the Problem REAL WORLD

13. Josh is watering his plants. He gives each of 2 plants $\frac{3}{5}$ pint of water. His watering can holds $\frac{1}{5}$ pint. How many times will he fill his watering can to water both plants?
a. What do you need to find?
\qquad
\qquad
b. What information do you need to use?
\qquad
\qquad

c. How can drawing a model help you solve the problem?
\qquad
\qquad
\qquad
d. Show the steps you use to solve the problem.
e. Complete the sentence.

Josh will fill his watering can \qquad times.
14. What is $\frac{5}{12}$ written as a product of a whole number and a unit fraction?
15. Test Prep Which is a multiple of $\frac{5}{6}$?
(A) $\frac{5}{12}$
(C) $\frac{10}{5}$
(B) $\frac{10}{12}$
(D) $\frac{10}{6}$
\qquad

Vocabulary

Choose the best term from the box.

1. A \qquad of a number is the product of the number and a counting number. (p. 316)

Vocabulary

multiple
product unit fraction
2. A \qquad always has a numerator of 1 . (p. 314)

Concepts and Skills

List the next four multiples of the unit fraction.
3. $\frac{1}{2}$,
, ,
4. $\frac{1}{5^{\prime}}$

Write the fraction as a product of a whole number and a unit fraction.
5. $\frac{4}{10}=$ \qquad 6. $\frac{8}{12}=$ \qquad 7. $\frac{3}{4}=$
\qquad

List the next four multiples of the fraction.
8. $\frac{2}{5}$

9. $\frac{5}{6}$

Write the product as the product of a whole number and a unit fraction.
10.

$4 \times \frac{2}{6}=$
11.

Fill in the bubble completely to show your answer.
12. Pedro cut a sheet of poster board into 10 equal parts. His brother used some of the poster board and now $\frac{8}{10}$ is left. Pedro wants to make a sign from each remaining part of the poster board. How many signs can he make?
(A) 1
(B) 2
(C) 8
(D) 10
13. Ella is making 3 batches of banana milkshakes. She needs $\frac{3}{4}$ gallon of milk for each batch. Her measuring cup holds $\frac{1}{4}$ gallon. How many times will she need to fill the measuring cup to make all 3 batches of milkshakes?
(A) 3
(B) 4
(C) 6
(D) 9
14. Darren cut a lemon pie into 8 equal slices. His friends ate some of the pie and now $\frac{5}{8}$ is left. Darren wants to put each slice of the leftover pie on its own plate. What part of the pie will he put on each plate?
(A) $\frac{1}{8}$
(B) $\frac{3}{8}$
(C) $\frac{5}{8}$
(D) $\frac{8}{8}$
15. Beth is putting liquid fertilizer on the plants in 4 flowerpots. Her measuring spoon holds $\frac{1}{8}$ teaspoon. The directions say to put $\frac{5}{8}$ teaspoon of fertilizer in each pot. How many times will Beth need to fill the measuring spoon to fertilize the plants in the 4 pots?
(A) 4
(B) 8
(C) 20
(D) 32
\qquad

Multiply a Fraction by a Whole Number

Using Models

Essential Question How can you use a model to multiply a fraction
by a whole number?

UNLOCK the Problem

REAL WORLD
Rafael practices the violin for $\frac{3}{4}$ hour each day. He has a
recital in 3 days. How much time will he practice in 3 days?

- How many equal groups of $\frac{3}{4}$ should you model?

\int Example 1 Use a model to multiply $3 \times \frac{3}{4}$.

Think: $3 \times \frac{3}{4}$ is 3 groups of $\frac{3}{4}$ of a whole. Shade the model to show 3 groups of $\frac{3}{4}$.

1 group of $\frac{3}{4}=$ \qquad
2 groups of $\frac{3}{4}=$ \qquad
3 groups of $\frac{3}{4}=$ \qquad
$3 \times \frac{3}{4}=$ \qquad
So, Rafael will practice for \qquad hours in all.

Math Talk

$4 \times \frac{2}{6}$, is the product greater than or less than 4? Explain.

1. Explain how you can use repeated addition with the model to find the product of $3 \times \frac{3}{4}$.
\qquad
2. Rafael's daily practice of $\frac{3}{4}$ hour is in sessions that last for $\frac{1}{4}$ hour each. Describe how the model shows the number of practice sessions Rafael has in 3 days.

1 Example 2 use a pattern to multiply.

You know how to use a model and repeated addition to multiply a fraction by a whole number. Look for a pattern in the table to discover another way to multiply a fraction by a whole number.

Multiplication Problem							Whole Number (Number of Groups)	Fraction (Size of Groups)	Product
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$2 \times \frac{1}{6}$	2	$\frac{1}{6}$ of a whole	$\frac{2}{6}$
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$				
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$2 \times \frac{2}{6}$	2	$\frac{2}{6}$ of a whole	$\frac{4}{6}$
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$				
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$2 \times \frac{3}{6}$	2	$\frac{3}{6}$ of a whole	$\frac{6}{6}$
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$				

When you multiply a fraction by a whole number, the numerator in the product is the product of the \qquad and the ___ of the fraction. The denominator in the product is the same as the \qquad of the fraction.
3. Summarize How do you multiply a fraction by a whole number without using a model or repeated addition?
\qquad
\qquad
4. Describe two different ways to find the product of $4 \times \frac{2}{3}$.

Name \qquad

Share and Show

1. Find the product of $3 \times \frac{5}{8}$.

$$
1 \text { group of } \frac{5}{8}=\frac{}{8}
$$

$$
2 \text { groups of } \frac{5}{8}=\frac{}{8}
$$

$$
3 \text { groups of } \frac{5}{8}=\frac{}{8}
$$

$$
3 \times \frac{5}{8}=
$$

\qquad
Multiply.
© 2

$2 \times \frac{4}{5}=$ \qquad
2.

3 groups of $\frac{5}{8}$
3.

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

$4 \times \frac{2}{3}=$ \qquad
\circlearrowleft
4. $5 \times \frac{3}{10}=$ \qquad 5. $4 \times \frac{5}{6}=$
\qquad

On Your Own

Multiply.

6. $2 \times \frac{7}{12}=$ \qquad 7. $6 \times \frac{3}{8}=$ \qquad 8. $5 \times \frac{2}{4}=$
\qquad
7. $3 \times \frac{4}{6}=$ \qquad 10. $2 \times \frac{5}{10}=$ \qquad 11. $4 \times \frac{2}{5}=$ \qquad

H.O.T. Algebra Write the unknown number.

12.

$\times \frac{2}{3}=\frac{12}{3}$
13. $5 \times \frac{}{4}=\frac{10}{4}$
14. $2 \times \frac{7}{}=\frac{14}{8}$

UNLOCK the Problem REAL wORLD

15. Lisa makes clothes for pets. She needs $\frac{5}{6}$ yard of fabric to make 1 dog coat. How much fabric does she need to make 3 dog coats?
(A) $\frac{8}{6}$ yard
(C) $\frac{24}{6}$ yards
(B) $\frac{15}{6}$ yards
(D) 15 yards
a. What do you need to find?

b. What information do you need?
\qquad
c. Show the steps you use to solve the problem.
d. Complete the sentence.

Lisa needs \qquad yards of fabric to make 3 dog coats.
16. Manuel's dog eats $\frac{3}{4}$ bag of dog food in 1 month. How many bags of dog food does Manuel's dog eat in 6 months?
(A) 9 bags
(B) $\frac{24}{4}$ bags
(C) $\frac{18}{4}$ bags
(D) $\frac{9}{4}$ bags
17. Carla walks her dog $\frac{2}{3}$ mile every day. How far does she walk her dog in 7 days?
(A) 14 miles
(B) $\frac{9}{3}$ miles
(C) $\frac{21}{7}$ miles
(D) $\frac{14}{3}$ miles
\qquad

Multiply a Fraction or Mixed Number

by a Whole Number

Essential Question How can you multiply a fraction by a whole number to solve a problem?

UNLOCK the Problem REAL wORLD

Christina is planning a dance routine. At the end of each measure of music, she will make a $1 \frac{1}{4}$ turn. How many turns will she make after the first 3 measures of music?

You can multiply a mixed number by a whole number.

1 Example

STEP 1 Write and solve an equation.

- Will Christina make more or less than $1 \frac{1}{4}$ turns in 3 measures of music?
- What operation will you use to solve the problem?
$3 \times 1 \frac{1}{4}=3 \times \square=\square$ Write $1 \frac{1}{4}$ as a fraction. Multiply.
STEP 2 Write the product as a mixed number.

$$
\frac{15}{4}=\frac{\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}}{1}+\underbrace{+}_{1}+\ldots+{ }_{1}^{+}++_{+}^{+}++_{\frac{1}{4}}^{+}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}
$$

$=\quad+\quad$ Combine the wholes. Then combine the remaining parts.
$=\quad$ Write the mixed number.

So, Christina will make \qquad turns.

MATHEMATICAL PRACTICES

1. If you multiply $3 \times \frac{1}{4}$, is the product greater than or less than 3? Explain.
mixed number as a fraction in Step 2 is related to division.
2. Explain how you can tell that $3 \times 1 \frac{1}{4}$ is greater than 3 without finding the exact product. use multiplication and division to rename fractions and mixed numbers.

Remember

The Identity Property of Multiplication states that the product of any number and 1 is that number.

Write $8 \frac{1}{5}$ as a fraction.

$$
8 \frac{1}{5}=8+\frac{1}{5}
$$

$=\left(8 \times _\right)+\frac{1}{5}$ Use the Identity Property of Multiplication.
$=|8 \times-\rangle+\frac{1}{5} \quad$ Rename 1.
$=\square+\square$ $=\square \quad$ Add.

P Write $\frac{32}{5}$ as a mixed number.

Find how many groups of $\frac{5}{5}$ are in $\frac{32}{5}$.

- Divide 32 by 5 .
- The quotient is the number of wholes in $\frac{32}{5}$.
- The remainder is the number of fifths left over.

There are 6 groups of $\frac{5}{5}$, or 6 wholes. There are 2 fifths, or $\frac{2}{5}$ left over.
$\frac{32}{5}=$

Try This! Find $5 \times 2 \frac{2}{3}$. Write the product as a mixed number.
$\begin{aligned} 5 \times 2 \frac{2}{3} & =5 \times & & \text { Write } 2 \frac{2}{3} \text { as a fraction. } \\ & = & & \text { Multiply. } \\ & = & & \text { Divide the numerator by } 3 .\end{aligned}$
3. Explain why your solution to $5 \times 2 \frac{2}{3}=13 \frac{1}{3}$ is reasonable.
\qquad
4. Sense or Nonsense? To find $5 \times 2 \frac{2}{3}$, Dylan says he can find $(5 \times 2)+\left(5 \times \frac{2}{3}\right)$. Does this make sense? Explain.
\qquad
\qquad
\qquad

Share and Show

1. $2 \times 3 \frac{2}{3}=2 \times$ \qquad

$$
\begin{aligned}
& = \\
& =
\end{aligned}
$$

Multiply. Write the product as a mixed number.
σ
2. $6 \times \frac{2}{5}=$
3. $3 \times 2 \frac{3}{4}=$ \qquad (8. $2 \times 1 \frac{5}{6}=$ \qquad

On Your Own

Multiply. Write the product as a mixed number.
5. $4 \times \frac{5}{8}=$ \qquad
6. $6 \times \frac{5}{12}=$ \qquad 7. $3 \times 2 \frac{1}{2}=$ \qquad
8. $2 \times 2 \frac{2}{3}=$ \qquad
9. $5 \times 1 \frac{2}{4}=$ \qquad 10. $4 \times 2 \frac{2}{5}=$ \qquad

Algebra Write the unknown number.
11. $\times 2 \frac{1}{3}=9 \frac{1}{3}$
12. $3 \times 2 \underline{2}=7 \frac{2}{4}$
13. $3 \times \quad \frac{3}{8}=4 \frac{1}{8}$
14. Describe two different ways to write $\frac{7}{3}$ as a mixed number.

Problem Solving REAL WORLD

Use the recipe for $15-18$.

15. Otis plans to make 3 batches of sidewalk chalk. How much plaster of Paris does he need?
\qquad
16. What's the Question? The answer is $\frac{32}{3}$.
\qquad
\qquad
17. Write Math Patty has 2 cups of warm water. Is that enough water to make 4 batches of sidewalk chalk? Explain how you know without finding the exact product.

Sidewalk Chalk Recipe

$\frac{3}{4}$ cup warm water
$1 \frac{1}{2}$ cups plaster of Paris
$2 \frac{2}{3}$ tablespoons powdered paint
18. Pose a Problem Look back at Problem 15. Change the number and write a similar problem.
\qquad
\qquad
\qquad
19. FH.O.T. 3 What's the Error? Brian says that $4 \times \frac{2}{5}=\frac{2}{5}+\frac{2}{5}+\frac{2}{5}$. Describe and correct his error.
\qquad
\qquad
\qquad
20. Test Prep Linda's favorite movie is $2 \frac{1}{4}$ hours long. She watched the movie 3 times last week. How many hours did she watch the movie?
(A) $\frac{3}{4}$ hour
(C) 6 hours
(B) $1 \frac{1}{3}$ hours
(D) $6 \frac{3}{4}$ hours

Problem Solving•Comparison

Problems with Fractions

Essential Question How can you use the strategy draw a diagram to solve comparison problems with fractions?

3 UNLOCK the Problem REAL WORLD

The deepest part of the Grand Canyon is about $1 \frac{1}{6}$ miles deep. The deepest part of the ocean is located in the Mariana Trench, in the Pacific Ocean. The deepest part of the ocean is almost 6 times as deep as the deepest part of the Grand Canyon. About how deep is the deepest part of the ocean?

Read the Problem
 What do I need to find?

I need to find \qquad

What information do I need to use?

The deepest part of the Grand
Canyon is about \qquad miles deep. The deepest part of the ocean is about \qquad times as deep.

How will I use the information?

I can \qquad
to compare the depths.

Solve the Problem

Draw a bar model. Compare the depth of the deepest part of the Grand Canyon and the deepest part of the ocean, in miles.

Write an equation and solve.
m is the deepest part of \qquad in miles.
$m=$ \qquad \qquad Write an equation.
$m=$ \qquad \qquad Write the mixed number as a fraction.
$m=$ \qquad Multiply.
$m=$ \qquad Write the fraction as a whole number.

So, the deepest part of the ocean is about \qquad miles deep.

I Try Another Problem

Mountains are often measured by the distance they rise above sea level. Mount Washington rises more than $1 \frac{1}{10}$ miles above sea level. Mount Everest rises about 5 times as high. About how many miles above sea level does Mount Everest rise?

\qquad
Share and Show

1. Komodo dragons are the heaviest lizards on earth.

A baby Komodo dragon is $1 \frac{1}{4}$ feet long when it hatches. Its mother is 6 times as long. How long is the mother?

First, draw a bar model to show the problem.

Then, write the equation you need to solve.

Finally, find the length of the mother Komodo dragon.
The mother Komodo dragon is \qquad feet long.
2. H.O.I. What if a male Komodo dragon is 7 times as long as the baby Komodo dragon? How long is the male? How much longer is the male than the mother?
3. The smallest hummingbird is the Bee hummingbird. It has a mass of about $1 \frac{1}{2}$ grams. A Rufous hummingbird's mass is 3 times the mass of the Bee hummingbird. What is the mass of a Rufous hummingbird?
4. Sloane needs $\frac{3}{4}$ hour to drive to her grandmother's house. It takes her 5 times as long to drive to her cousin's house. How long does it take to drive to her cousin's house?

On Your Own

Use the table for 5 and 6.

Payton has a variety of flowers in her garden. The table shows the average height of the flowers.

Choose a STRATEGY

Act It Out

Draw a Diagram
Find a Pattern
Make a Table or List
Solve a Simpler Problem

SHOW YOUR WORK

\qquad

Chapter Review/Test

Vocabulary

Choose the best term from the box.

1. A \qquad can name part of a whole or part of a group. (p. 316)
2. A \qquad of a number is the product of the number

Vocabulary

fraction
multiple
product
and a counting number. (p. 316)

Concepts and Skills

List the next four multiples of the unit fraction.
3. $\frac{1}{8^{\prime}}$
4. $\frac{1}{4^{\prime}}$

Write the fraction as a product of a whole number and a unit fraction.
5. $\frac{7}{12}=$ \qquad 6. $\frac{4}{12}=$
7. $\frac{5}{4}=$
\qquad

List the next four multiples of the fraction.
8. $\frac{3}{10}$,
9. $\frac{2}{3}$

Write the product as the product of a whole number and a unit fraction.
10. $3 \times \frac{2}{4}=$ \qquad 11. $2 \times \frac{3}{5}=$ \qquad 12. $4 \times \frac{2}{3}=$
\qquad

Multiply.

13. $5 \times \frac{7}{10}=$ \qquad 14. $4 \times \frac{3}{4}=$ \qquad 15. $3 \times \frac{8}{12}=$
\qquad

Multiply. Write the product as a mixed number.
16. $3 \times 1 \frac{1}{8}=$ \qquad 17. $2 \times 2 \frac{1}{5}=$ \qquad 18. $8 \times 1 \frac{3}{5}=$
\qquad

Fill in the bubble completely to show your answer.
19. Bryson has soccer practice for $2 \frac{1}{4}$ hours 2 times a week. How much time does Bryson spend at soccer practice in 1 week?
(A) 2 hours
(B) 4 hours
(C) $4 \frac{2}{4}$ hours
(D) $8 \frac{2}{4}$ hours
20. Nigel cut a loaf of bread into 12 equal slices. His family ate some of the bread and now $\frac{5}{12}$ is left. Nigel wants to put each of the leftover slices in its own bag. How many bags does Nigel need?
(A) 5
(B) 7
(C) 12
(D) 17
21. Micala made a list of some multiples of $\frac{3}{5}$. Which could be Micala's list?
(A) $\frac{3}{5}, \frac{9}{5}, \frac{12}{5}, \frac{19}{5}$
(B) $\frac{3}{5}, \frac{6}{10}, \frac{9}{15}, \frac{12}{20}$
(C) $\frac{1}{5}, \frac{3}{5}, \frac{6}{5}, \frac{9}{5}$
(D) $\frac{3}{5}, \frac{6}{5}, \frac{9}{5}, \frac{12}{5}$
22. Lincoln spent $1 \frac{1}{4}$ hours reading a book. Phoebe spent 3 times as much time as Lincoln reading a book. How much time did Phoebe spend reading?
(A) $1 \frac{1}{16}$ hours
(B) $3 \frac{1}{4}$ hours
(C) $3 \frac{3}{4}$ hours
(D) $4 \frac{1}{4}$ hours

Fill in the bubble completely to show your answer.
23. Griffin used a number line to write the multiples of $\frac{3}{8}$. Which multiple on the number line shows the product $2 \times \frac{3}{8}$?

(A) $\frac{2}{8}$
(B) $\frac{3}{8}$
(C) $\frac{6}{8}$
(D) $\frac{9}{8}$
24. Serena's rabbit weighs $3 \frac{1}{2}$ pounds. Jarod's rabbit weighs 3 times as much as Serena's rabbit. How much does Jarod's rabbit weigh?
(A) $3 \frac{1}{6}$ pounds
(B) $7 \frac{1}{6}$ pounds
(C) $9 \frac{1}{2}$ pounds
(D) $10 \frac{1}{2}$ pounds
25. Jacadi is setting up a tent. Each section of a tent pole is $\frac{2}{3}$ yard long. She needs 4 sections to make 1 pole. How long is 1 tent pole?
(A) $\frac{12}{3}$ yards
(B) $\frac{8}{3}$ yards
(C) 8 yards
(D) $\frac{4}{3}$ yards

Constructed Response

26. Oliver has music lessons Monday, Wednesday, and Friday. Each lesson is $\frac{3}{4}$ hour. Oliver says he will have lessons for $2 \frac{1}{2}$ hours this week. Do you agree or disagree? Explain your reasoning.
\qquad
\qquad

Performance Task

27. The common snapping turtle is a freshwater turtle. It can grow to about $1 \frac{1}{6}$ feet long. The leatherback sea turtle is the largest of all sea turtles. The average length of a leatherback is about 5 times as long as a common snapping turtle.
(A) Draw a diagram to compare the lengths of the turtles. Then write an equation to find the length of a leatherback. Explain how the diagram helps you write the equation.

B About how long is the leatherback sea turtle? \qquad
C A loggerhead sea turtle is about 3 times as long as the common snapping turtle. How long is the loggerhead? Explain your answer.
\qquad
\qquad
\qquad
\qquad

