Chapter
 8 Letter

Dear Family,
During the next few weeks, our math class will be learning how to multiply fractions and mixed numbers by whole numbers. We will learn to write a fraction as a product of a whole number and a unit fraction, and to find multiples of unit fractions.
You can expect to see homework that provides practice multiplying fractions and whole numbers with and without using models.
Here is a sample of how your child will be taught to use a number line to find multiples of a fraction.

Vocabulary

mixed number A number represented by a whole number and a fraction
multiple A number that is the product of a given number and a counting number
unit fraction A fraction that has 1 as its top number or numerator

I MODEL Use a Number Line to Write Multiples of Fractions

Write $3 \times \frac{3}{4}$ as the product of a whole number and a unit fraction.

STEP 1
Start at 0 . Draw jumps to find multiples of $\frac{3}{4}: \frac{3}{4}, \frac{6}{4}, \frac{9}{4}$.

STEP 2

Write the multiple as a product of a whole number and a unit fraction.

So, $3 \times \frac{3}{4}=\frac{9}{4}=9 \times \frac{1}{4}$.
Tips

Renaming as a Mixed Number

When the numerator is greater than the denominator, the fraction can be renamed as a mixed number.

$$
\begin{aligned}
\frac{9}{4} & =\frac{4}{4}+\frac{4}{4}+\frac{1}{4} \\
& =2+\frac{1}{4} \\
& =2 \frac{1}{4}
\end{aligned}
$$

Activity

Use everyday situations, such as cooking and measures to help your child practice fraction multiplication.

8 बतार्व para la casa

Querida familia,

Durante las próximas semanas, en la clase de matemáticas aprenderemos a multiplicar fracciones y números mixtos por números enteros. También aprenderemos a escribir fracciones como el producto de un número entero y una fracción unitaria y a hallar múltiplos de fracciones unitarias.

Llevaré a casa tareas para practicar la multiplicación de fracciones y números enteros usando modelos y sin modelos.

Este es un ejemplo de cómo vamos a usar una recta numérica para hallar los múltiplos de una fracción.

Vocabulary

fracción unitaria Una fracción que tiene al 1 como numerador, es decir, arriba de la barra
múltiplo Un número que es el producto de cierto número y un número positivo distinto de cero
número mixto Un número que se representa por un número entero y una fracción

I MODELO Usar una recta numérica para escribir múltiplos de fracciones

Escribe $3 \times \frac{3}{4}$ como el producto de un número entero y una fracción unitaria.

PASO 1

Comienza en 0 . Dibuja saltos para hallar los múltiplos de $\frac{3}{4}: \frac{3}{4}, \frac{6}{4^{\prime}} \frac{9}{4}$

PASO 2

Escribe el múltiplo como el producto de un número entero y una fracción unitaria.

Por lo tanto, $3 \times \frac{3}{4}=\frac{9}{4}=9 \times \frac{1}{4}$.

Actividad

Use situaciones de la vida diaria, como cocinar y medir para ayudar a su hijo o hija a practicar la multiplicación con fracciones.

Expresarlo como un número mixto

Cuando el numerador es mayor que el denominador, la fracción se puede expresar como un número mixto.

$$
\begin{aligned}
\frac{9}{4} & =\frac{4}{4}+\frac{4}{4}+\frac{1}{4} \\
& =2+\frac{1}{4} \\
& =2 \frac{1}{4}
\end{aligned}
$$

\qquad

Multiples of Unit Fractions

Write the fraction as a product of a whole number and a unit fraction.

1. $\frac{5}{6}=$ \qquad
2. $\frac{7}{8}=$ \qquad 3. $\frac{5}{3}=$ \qquad
3. $\frac{9}{10}=$ \qquad
4. $\frac{3}{4}=$ \qquad
5. $\frac{11}{12}=$
\qquad
6. $\frac{4}{6}=$ \qquad
7. $\frac{8}{20}=$ \qquad
8. $\frac{13}{100}=$ \qquad

List the next four multiples of the unit fraction.
10. $\frac{1}{5}$ \qquad

Problem Solving REAL wORLD

11. $\frac{1}{8}$ \qquad
12. So far, Monica has read $\frac{5}{6}$ of a book. She has read the same number of pages each day for 5 days. What fraction of the book does Monica read each day?
13. Nicholas buys $\frac{3}{8}$ pound of cheese. He puts the same amount of cheese on 3 sandwiches. How much cheese does Nicholas put on each sandwich?

Lesson Check

1. Selena walks from home to school each morning and back home each afternoon. Altogether, she walks $\frac{2}{3}$ mile each day. How far does Selena live from school?
(A) $\frac{1}{3}$ mile
(B) $\frac{2}{3}$ mile
(C) $1 \frac{1}{3}$ miles
(D) 2 miles

Spiral Review

3. Liza bought $\frac{5}{8}$ pound of trail mix. She gives $\frac{1}{8}$ pound of trail mix to Michael.
How much trail mix does Liza have left?
(Lesson 7.5)
(A) $\frac{1}{8}$ pound
(B) $\frac{2}{8}$ pound
(C) $\frac{3}{8}$ pound
(D) $\frac{4}{8}$ pound
4. Randy's house number is a composite number. Which of the following could be Randy's house number? (Lesson 5.5)
(A) 29
(B) 39
(C) 59
(D) 79
5. Leigh has a piece of rope that is $6 \frac{2}{3}$ feet long. How do you write $6 \frac{2}{3}$ as a fraction greater than 1? (Lesson 7.6)
(A) $\frac{11}{3}$
(B) $\frac{15}{3}$
(C) $\frac{20}{3}$
(D) $\frac{62}{3}$
6. Mindy buys 12 cupcakes. Nine of the cupcakes have chocolate frosting and the rest have vanilla frosting. What fraction of the cupcakes have vanilla frosting?
(Lesson 6.3)
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{3}{4}$
\qquad

Multiples of Fractions

List the next four multiples of the fraction.

1. $\frac{3}{5}$ \qquad
2. $\frac{2}{6}$ \qquad
3. $\frac{4}{8^{\prime}}$ \qquad
4. $\frac{5}{10}$, \qquad

Write the product as the product of a whole number and a unit fraction.
5.

$$
2 \times \frac{4}{5}=
$$

Problem Solving REAL WORID

7. Jessica is making 2 loaves of banana bread. She needs $\frac{3}{4}$ cup of sugar for each loaf. Her measuring cup can only hold $\frac{1}{4}$ cup of sugar. How many times will Jessica need to fill the measuring cup in order to get enough sugar for both loaves of bread?
8.

$5 \times \frac{2}{3}=$ \qquad
8. A group of four students is performing an experiment with salt. Each student must add $\frac{3}{8}$ teaspoon of salt to a solution. The group only has a $\frac{1}{8}$-teaspoon measuring spoon. How many times will the group need to fill the measuring spoon in order to perform the experiment?

Lesson Check

1. Eloise made a list of some multiples of $\frac{5}{8}$. Which of the following lists could be Eloise's list?
(A) $\frac{5}{8}, \frac{10}{16}, \frac{15}{24}, \frac{20}{32}, \frac{25}{40}$
(B) $\frac{5}{8}, \frac{10}{8}, \frac{15}{8}, \frac{20}{8}, \frac{25}{8}$
(C) $\frac{5}{8}, \frac{6}{8}, \frac{7}{8}, \frac{8}{8}, \frac{9}{8}$
(D) $\frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{4}{8}, \frac{5}{8}$
2. David is filling five $\frac{3}{4}$-quart bottles with a sports drink. His measuring cup only holds $\frac{1}{4}$ quart. How many times will David need to fill the measuring cup in order to fill the 5 bottles?
(A) 5
(B) 10
(C) 15
(D) 20

Spiral Review

3. Ira has 128 stamps in his stamp album. He has the same number of stamps on each of the 8 pages. How many stamps are on each page? (Lesson 4.11)
(A) 12
(B) 14
(C) 16
(D) 18
4. Tina buys $3 \frac{7}{8}$ yards of material at the fabric store. She uses it to make a skirt. Afterward, she has $1 \frac{3}{8}$ yards of the fabric leftover. How many yards of material did Tina use? (Lesson 7.7)
(A) $1 \frac{4}{8}$ yards
(B) $2 \frac{1}{8}$ yards
(C) $2 \frac{4}{8}$ yards
(D) $5 \frac{2}{8}$ yards
5. Ryan is saving up for a bike that costs \$198. So far, he has saved \$15 per week for the last 12 weeks. How much more money does Ryan need in order to be able to buy the bike? (Lesson 3.7)
(A) $\$ 8$
(B) $\$ 18$
(C) $\$ 48$
(D) $\$ 180$
6. Which list shows the fractions in order from least to greatest? (Lesson 6.8)
(A) $\frac{2}{3}, \frac{3}{4}, \frac{7}{12}$
(B) $\frac{7}{12}, \frac{3}{4}, \frac{2}{3}$
(C) $\frac{3}{4}, \frac{2}{3}, \frac{7}{12}$
(D) $\frac{7}{12}, \frac{2}{3}, \frac{3}{4}$

Multiply a Fraction by a Whole Number Using Models

Multiply.

1. $2 \times \frac{5}{6}=\frac{10}{6}$
2. $3 \times \frac{2}{5}=$ \qquad 3. $7 \times \frac{3}{10}=$

\qquad
3. $3 \times \frac{5}{12}=$ \qquad
4. $6 \times \frac{3}{4}=$ \qquad
5. $4 \times \frac{2}{8}=$
\qquad
6. $5 \times \frac{2}{3}=$ \qquad
7. $2 \times \frac{7}{8}=$ \qquad 9. $6 \times \frac{4}{5}=$ \qquad

Problem Solving REAL wORID

10. Matthew walks $\frac{5}{8}$ mile to the bus stop each morning. How far will he walk in 5 days?
11. Emily uses $\frac{2}{3}$ cup of milk to make one batch of muffins. How many cups of milk will Emily use if she makes 3 batches of muffins?

Lesson Check

1. Aleta's puppy gained $\frac{3}{8}$ pound each week for 4 weeks. Altogether, how much weight did the puppy gain during the 4 weeks?
(A) $\frac{8}{12}$ pound
(B) $1 \frac{2}{8}$ pounds
(C) $\frac{12}{8}$ pounds
(D) $4 \frac{3}{8}$ pounds
2. Pedro mixes $\frac{3}{4}$ teaspoon of plant food into each gallon of water. How many teaspoons of plant food should Pedro mix into 5 gallons of water?
(A) $\frac{3}{20}$ teaspoon
(B) $\frac{4}{15}$ teaspoon
(C) $\frac{8}{4}$ teaspoons
(D) $\frac{15}{4}$ teaspoons

Spiral Review

3. Ivana has $\frac{3}{4}$ pound of hamburger meat. She makes 3 hamburger patties. Each patty weighs the same amount. How much does each hamburger patty weigh? (Lesson 8.1)
(A) $\frac{1}{4}$ pound
(B) $\frac{1}{3}$ pound
(C) $2 \frac{1}{4}$ pounds
(D) 3 pounds
4. Lance wants to find the total length of 3 boards. He uses the expression $3 \frac{1}{2}+\left(2+4 \frac{1}{2}\right)$. How can Lance rewrite the expression using both the Associative and Commutative Properties of Addition?

(Lesson 7.9)

(A) $5+4 \frac{1}{2}$
(C) $2+\left(3 \frac{1}{2}+4 \frac{1}{2}\right)$
(B) $\left(3 \frac{1}{2}+2\right)+4 \frac{1}{2}$
(D) $3 \frac{1}{2}+\left(4 \frac{1}{2}+2\right)$
(C) $\frac{3}{6}>\frac{4}{5}$
(D) $\frac{1}{2}>\frac{3}{4}$
4. Which of the following expressions is NOT equal to $\frac{7}{10}$? (Lesson 7.2)
(A) $\frac{5}{10}+\frac{1}{10}+\frac{1}{10}$
(B) $\frac{2}{10}+\frac{2}{10}+\frac{3}{10}$
(C) $\frac{3}{10}+\frac{3}{10}+\frac{2}{10}$
(D) $\frac{4}{10}+\frac{2}{10}+\frac{1}{10}$
6. Which of the following statements is true?

(Lesson 6.6)

(A) $\frac{5}{8}>\frac{9}{10}$
(B) $\frac{5}{12}>\frac{1}{3}$

Multiply a Fraction or Mixed Number by a Whole Number

Multiply. Write the product as a mixed number.

1. $5 \times \frac{3}{10}=\underline{1 \frac{5}{10}}$
2. $3 \times \frac{3}{5}=$ \qquad 3. $5 \times \frac{3}{4}=$ \qquad
3. $4 \times 1 \frac{1}{5}=$ \qquad 5. $2 \times 2 \frac{1}{3}=$ \qquad 6. $5 \times 1 \frac{1}{6}=$ \qquad
4. $2 \times 2 \frac{7}{8}=$ \qquad
5. $7 \times 1 \frac{3}{4}=$ \qquad 9. $8 \times 1 \frac{3}{5}=$ \qquad

Problem Solving REAL WORLD

10. Brielle exercises for $\frac{3}{4}$ hour each day for 6 days in a row. Altogether, how many hours does she exercise during the 6 days?
11. A recipe for quinoa calls for $2 \frac{2}{3}$ cups of milk. Conner wants to make 4 batches of quinoa. How much milk does he need?

Lesson Check

1. A mother is $1 \frac{3}{4}$ times as tall as her son. Her son is 3 feet tall. How tall is the mother?
(A) $4 \frac{3}{4}$ feet
(B) $5 \frac{1}{4}$ feet
(C) $5 \frac{1}{2}$ feet
(D) $5 \frac{3}{4}$ feet
2. The cheerleaders are making a banner that is 8 feet wide. The length of the banner is $1 \frac{1}{3}$ times the width of the banner. How long is the banner?
(A) $8 \frac{1}{3}$ feet
(B) $8 \frac{3}{8}$ feet
(C) $10 \frac{1}{3}$ feet
(D) $10 \frac{2}{3}$ feet

Spiral Review

3. Karleigh walks $\frac{5}{8}$ mile to school every day. How far does she walk to school in 5 days? (Lesson 8.3)
(A) $\frac{5}{40}$ mile
(B) $\frac{25}{40}$ mile
(C) $\frac{10}{8}$ miles
(D) $\frac{25}{8}$ miles
4. Jo cut a key lime pie into 8 equal-size slices. The next day, $\frac{7}{8}$ of the pie is left. Jo puts each slice on its own plate. How many plates does she need? (Lesson 8.1)
(A) 5
(B) 6
(C) 7
(D) 8
5. Which number is a multiple of $\frac{4}{5}$? (Lesson 8.2)
(A) $\frac{8}{10}$
(B) $\frac{12}{15}$
(C) $\frac{16}{20}$
(D) $\frac{12}{5}$
6. Over the weekend, Ed spent $1 \frac{1}{4}$ hours doing his math homework and $1 \frac{3}{4}$ hours doing his science project. Altogether, how much time did Ed spend doing homework over the weekend? (Lesson 7.7)
(A) 3 hours
(B) $2 \frac{3}{4}$ hours
(C) $2 \frac{1}{2}$ hours
(D) 2 hours

Problem Solving • Comparison Problems with Fractions

Read each problem and solve.

1. A shrub is $1 \frac{2}{3}$ feet tall. A small tree is 3 times as tall as the shrub. How tall is the tree?
t is the height of the tree, in feet.
$t=3 \times 1 \frac{2}{3}$
$t=3 \times \frac{5}{3}$
$t=\frac{15}{3}$
$t=5$
So, the tree is 5 feet tall.
shrub

tree
$1 \frac{2}{3}$
$1 \frac{2}{3}$ $\frac{12}{3}$
2. You run $1 \frac{3}{4}$ miles each day. Your friend runs 4 times as far as you do. How far does your friend run each day?
3. At the grocery store, Ayla buys $1 \frac{1}{3}$ pounds of ground turkey. Tasha buys 2 times as much ground turkey as Ayla. How much ground turkey does Tasha buy?
4. When Nathan's mother drives him to school, it takes $\frac{1}{5}$ hour. When Nathan walks to school, it takes him 4 times as long to get to school. How long does it take Nathan to walk to school?

Lesson Check

1. A Wilson's Storm Petrel is a small bird with a wingspan of $1 \frac{1}{3}$ feet. A California Condor is a larger bird with a wingspan almost 7 times as wide as the wingspan of the petrel. About how wide is the wingspan of the California Condor?
(A) $\frac{4}{21}$ foot
(B) $2 \frac{1}{3}$ feet
(C) $7 \frac{1}{3}$ feet
(D) $9 \frac{1}{3}$ feet
2. The walking distance from the Empire State Building in New York City to Times Square is about $\frac{9}{10}$ mile. The walking distance from the Empire State Building to Sue's hotel is about 8 times as far. About how far is Sue's hotel from the Empire State Building?
(A) $\frac{9}{80}$ mile
(B) $\frac{72}{80}$ mile
(C) $1 \frac{7}{10}$ miles
(D) $7 \frac{2}{10}$ miles

Spiral Review

3. Which of the following expressions is NOT equal to $3 \times 2 \frac{1}{4}$? (Lesson 8.4)
(A) $3 \times \frac{9}{4}$
(B) $(3 \times 2)+\left(3 \times \frac{1}{4}\right)$
(C) $6 \frac{3}{4}$
(D) $3 \times 2+\frac{1}{4}$

都
4. At a bake sale, Ron sells $\frac{7}{8}$ of an apple pie and $\frac{5}{8}$ of a cherry pie. Altogether, how much pie does he sell at the bake sale?
(Lesson 7.5)
(A) $\frac{2}{8}$
(B) $\frac{12}{16}$
(C) $\frac{12}{8}$
(D) $\frac{35}{8}$
6. Which of the following numbers is composite? (Lesson 5.5)
(A) 4
(C) 2
(B) 3
(D) 1
\qquad

Chapter 8 Extra Practice

Lesson 8.1

Write the fraction as a product of a whole number and a unit fraction.

1. $\frac{5}{6}=$ \qquad
2. $\frac{7}{8}=$ \qquad
3. $\frac{3}{5}=$
\qquad

List the next four multiples of the unit fraction.
4. $\frac{1}{2}$ \qquad
5. $\frac{1}{6}$ \qquad

Lesson 8.2

List the next four multiples of the fraction.

1. $\frac{3}{10^{\prime}}$ \qquad 2. $\frac{7}{12}$ \qquad

Write the product as the product of a whole number and a unit fraction.
3.

$2 \times \frac{3}{6}=$ \qquad
4.

$$
3 \times \frac{2}{8}=
$$

\qquad

Lesson 8.3

Multiply.

1. $3 \times \frac{7}{10}=$ \qquad 2. $5 \times \frac{4}{8}=$ \qquad 3. $4 \times \frac{6}{12}=$ \qquad
2. $2 \times \frac{3}{4}=$ \qquad
3. $6 \times \frac{3}{5}=$ \qquad
4. $7 \times \frac{2}{10}=$
\qquad

Lesson 8.4

Multiply. Write the product as a mixed number.

1. $4 \times \frac{8}{10}=$ \qquad
2. $3 \times \frac{5}{6}=$
3. $2 \times 3 \frac{1}{3}=$ \qquad
4. $4 \times 2 \frac{2}{5}=$ \qquad 5. $5 \times 1 \frac{7}{8}=$ \qquad 6. $3 \times 3 \frac{3}{4}=$ \qquad

Lesson 8.5

1. A shrub in Pam's back yard is about $1 \frac{3}{8}$ feet tall. A small tree in her back yard is 7 times as tall as the shrub. About how tall is the tree?
2. A puppy weighs $\frac{9}{10}$ pound. Its mother weighs 8 times as much. How much does the mother weigh?
