Equivalent Fractions

Write two fractions that are equivalent to $\frac{2}{6}$.							
Step 1 Ma	Step 1 Make a model to represent $\frac{2}{6}$.						
The rectang	gle is divide	ed into 6 eq	ual parts, v	vith 2 parts	shaded.		
Step 2 Div	ide the rec	tangle from	Step 1 in I	half.			
The rectang	gle is now c	livided into	12 equal p	arts, with 4	parts shac	led.	
The model	shows the	fraction $\frac{4}{12}$.	So, $\frac{2}{6}$ and	$\frac{4}{12}$ are equi	ivalent.		
Step 3Draw the same rectangle as in Step 1, but with only 3 equal parts. Keep the same amount of the rectangle shaded.							
The rectangle is now divided into 3 equal parts, with 1 part shaded.							
The model shows the fraction $\frac{1}{3}$. So, $\frac{2}{6}$ and $\frac{1}{3}$ are equivalent.							

Use models to write two equivalent fractions.

1. $\frac{2}{4}$ **2.** $\frac{4}{6}$

Generate Equivalent Fractions

Write an equivalent fraction for $\frac{4}{5}$.				
Step 1 Choose a whole number, like 2.				
Step 2 Create a fraction using 2 as the numerator and denominator: $\frac{2}{2}$. This fraction is equal to 1. You can multiply a number by 1 without changing the value of the number.				
Step 3 Multiply $\frac{4}{5}$ by $\frac{2}{2}$: $\frac{4 \times 2}{5 \times 2} = \frac{8}{10}$.				
So, $\frac{4}{5}$ and $\frac{8}{10}$ are equivalent.				
Write another equivalent fraction for $\frac{4}{5}$.				
Step 1 Choose a different whole number, like 20.				
Step 2 Create a fraction using 20 as the numerator and denominator: $\frac{20}{20}$.				
Step 3 Multiply $\frac{4}{5}$ by $\frac{20}{20}$: $\frac{4 \times 20}{5 \times 20} = \frac{80}{100}$.				
So, $\frac{4}{5}$ and $\frac{80}{100}$ are equivalent.				

Write two equivalent fractions.

Name _

Simplest Form

A fraction is in **simplest form** when 1 is the only factor that the numerator and denominator have in common.

Tell whether the fraction $\frac{7}{8}$ is in simplest form.

Look for common factors in the numerator and the denominator.

Step 1 The numerator of $\frac{7}{8}$ is 7. List all the factors of 7.	$1 \times 7 = 7$			
	The factors of 7 are 1 and 7.			
Step 2 The denominator of $\frac{7}{8}$ is 8. List all the factors of 8.	$ \begin{array}{l} 1 \times 8 = 8 \\ 2 \times 4 = 8 \end{array} $			
	The factors of 8 are 1, 2, 4, and 8.			
Step 3 Check if the numerator and denominator of $\frac{7}{8}$ have any common factors greater than 1.	The only common factor of 7 and 8 is 1.			
So, $\frac{7}{8}$ is in simplest form.				

Tell whether the fraction is in simplest form. Write yes or no.

1. $\frac{4}{10}$	2. $\frac{2}{8}$	3. $\frac{3}{5}$	
Write the fraction in simp	lest form.	3	
4. $\frac{4}{12}$	5. $\frac{0}{10}$	6. $\frac{5}{6}$	

Common Denominators

A common denominator is a common multiple of the denominators of two or more fractions.				
Write $\frac{2}{3}$ and $\frac{3}{4}$ as a pair of fractions with common denominators.				
Step 1 Identify the denominators of $\frac{2}{3}$ and $\frac{3}{4}$.	$\frac{2}{3}$ and $\frac{3}{4}$ The denominators are 3 and 4.			
Step 2 List multiples of 3 and 4. Circle common multiples.	3: 3, 6, 9, 12, 15, 18 4: 4, 8, 12, 16, 20 12 is a common multiple of 3 and 4.			
Step 3 Rewrite $\frac{2}{3}$ as a fraction with a denominator of 12.	$\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$			
Step 4 Rewrite $\frac{3}{4}$ as a fraction with a denominator of 12.	$\frac{3}{4} = \frac{3 \times 3}{4 \times \underline{3}} = \frac{9}{12}$			
So, you can rewrite $\frac{2}{3}$ and $\frac{3}{4}$ as $\frac{8}{12}$ and $\frac{9}{12}$.				

Write the pair of fractions as a pair of fractions with a common denominator.

1.
$$\frac{1}{2}$$
 and $\frac{1}{3}$
2. $\frac{2}{4}$ and $\frac{5}{8}$
3. $\frac{1}{2}$ and $\frac{3}{5}$
4. $\frac{1}{4}$ and $\frac{5}{6}$
5. $\frac{2}{5}$ and $\frac{2}{3}$
6. $\frac{4}{5}$ and $\frac{7}{10}$

Problem Solving • Find Equivalent Fractions

Kyle's mom bought bunches of balloons for a family party. Each bunch has 4 balloons, and $\frac{1}{4}$ of the balloons are blue. If Kyle's mom bought 5 bunches of balloons, how many balloons did she buy? How many of the balloons are blue?

Read the Problem							
What do I need to find? I need to find how many balloons Kyle's mom bought and how many of the balloons are blue.	What information do I need to use? Each bunch has 1 out of 4 balloons that are blue, and there are 5 bunches.		How will I use the information? I will make a table to find the total number balloons Kyle's mom bought and the fraction of balloons that are blue.				
	Solve the Prob	lem					
l can make a table.							
Number of Bunches 1			2	3	4	5	
Total Number of Blue Balloons Total Number of Balloons		<u>1</u> 4	$\frac{2}{8}$	<u>3</u> 12	<u>4</u> 16	$\frac{5}{20}$	
Kyle's mom bought 20 balloons. 5 of the balloons are blue.							

Make a table to solve.

- 1. Jackie is making a beaded bracelet. The bracelet will have no more than 12 beads. $\frac{1}{3}$ of the beads on the bracelet will be green. What other fractions could represent the part of the beads on the bracelet that will be green?
- 2. Ben works in his dad's bakery packing bagels. Each package can have no more than 16 bagels. $\frac{3}{4}$ of the bagels in each package are plain. What other fractions could represent the part of the bagels in each package that will be plain?

Compare Fractions Using Benchmarks

Name .

A **benchmark** is a known size or amount that helps you understand a different size or amount. You can use $\frac{1}{2}$ as a benchmark. Sara reads for $\frac{3}{6}$ hour every day after school. Connor reads for $\frac{2}{3}$ hour. Who reads for a longer amount of time? Compare the fractions. $\frac{3}{6} = \frac{2}{3}$ <u>3</u> **Step 1** Divide one circle into 6 equal parts. Divide another circle into 3 equal parts. **Step 2** Shade $\frac{3}{6}$ of the first circle. How many parts will you shade? 3 parts Sara Connor **Step 3** Shade $\frac{2}{3}$ of the second circle. How many parts will you shade? 2 parts Step 4 Compare the shaded parts of each circle. Half of Sara's circle is shaded. More than half of Connor's circle is shaded. $\frac{3}{6}$ is less than $\frac{2}{3}$. $\frac{3}{6} \left(\right) \frac{2}{3}$ So, Connor reads for a longer amount of time. **1.** Compare $\frac{2}{8}$ and $\frac{3}{4}$. Write < or >. 0 1 0 1

Compare Fractions

Theo filled a beaker $\frac{2}{4}$ full with water. Angelica filled a beaker $\frac{3}{8}$ full with water. Whose beaker has more water? Compare $\frac{2}{4}$ and $\frac{3}{8}$.

Compare and Order Fractions

Write $\frac{3}{8}$, $\frac{1}{4}$, and $\frac{1}{2}$ in order from least to greatest.					
Step 1 Identify a common denominator.	Multiples of 8:(8,)16, 24				
	Multiples of 4: 4, (8,) 16,				
	Multiples of 2: 2, 4, 6,				
	Use 8 as a common denominator.				
Step 2 Use the common denominator to write equivalent fractions.	$\frac{\frac{3}{8}}{\frac{1}{4}} = \frac{1 \times 2}{4 \times 2} = \frac{2}{8}$ $\frac{1}{2} = \frac{1 \times 4}{2 \times 4} = \frac{4}{8}$				
Step 3 Compare the numerators.	2 < 3 < 4				
Step 4 Order the fractions from least to greatest, using $<$ or $>$ symbols.	$\frac{2}{8} < \frac{3}{8} < \frac{4}{8}$				
So, $\frac{1}{4} < \frac{3}{8} < \frac{1}{2}$.					

Write the fraction with the greatest value.

1. $\frac{2}{3}$, $\frac{1}{4}$, $\frac{1}{6}$	2. $\frac{3}{10}, \frac{1}{2}, \frac{2}{5}$	3. $\frac{1}{8}$, $\frac{5}{12}$, $\frac{9}{10}$
---	--	---

Write the fractions in order from least to greatest.

	9 1 4	3 71	2 35
4.	<u>10</u> ' <u>2</u> ' <u>5</u>	5. $\overline{4}', \overline{8}', \overline{2}$	6. <u>3</u> , <u>4</u> , <u>6</u>