Show What You Know

Check your understanding of important skills.
Name \qquad
Skip-Count Skip-count to find the unknown numbers.

1. Skip count by 3 s .
2. Skip count by 5 s .
\qquad 3 \qquad , \qquad , \qquad
\qquad 5 \qquad , \qquad ,

Arrays Use the array to find the product.

4.

\qquad rows of \qquad $=$ \qquad
\qquad rows of \qquad $=$ \qquad
Multiplication Facts Find the product.
5. $4 \times 5=$ \qquad 6. $9 \times 4=$ \qquad 7. $6 \times 7=$ \qquad

Recycled plastic helps keep people warm. Some factories use recycled plastic, combined with other fabrics, to make winter jackets. A warehouse has 46 truckloads of recycled plastic. They use 8 truckloads each day. When there are fewer than 16 truckloads, more needs to be ordered. Be a Math Detective. Figure out how many truckloads will be left after $\mathbf{2}$ days. After 3 days. When will more need to be ordered?

Vocabulary Builder

Visualize It

Complete the flow map by using the words with a \checkmark.

Review Words
\checkmark array
multiple
\checkmark product

Preview Words
common factor
common multiple
composite number
divisible
\checkmark factor
pattern
prime number
term
2. A number that is a multiple of two or more numbers is a
\qquad _.
3. A number that has exactly two factors, 1 and itself, is a
\qquad .
4. A number that has more than two factors is a
\qquad .
5. A number is \qquad by another number if the quotient is a counting number and the remainder is 0 .
6. An ordered set of numbers or objects is a
\qquad .
7. Each number in a pattern is called a \qquad .
\qquad

Model Factors

Essential Question How can you use models to find factors?

UNLOCK the Problem REAL WORLD

A factor is a number multiplied by another number to find a product. Every whole number greater than 1 has at least two factors, that number and 1.

```
18=1 }\times1
7=7\times1
342=1\times342
    factor factor
```

Many numbers can be broken into factors in different ways.

$$
16=1 \times 16 \quad 16=4 \times 4 \quad 16=2 \times 8
$$

P Activity Model and record the factors of 24.

Materials \quad square tiles
Use all 24 tiles to make as many different arrays as you can. Record the arrays in the grid, and write the factors modeled.

Math Idea

When you are asked to find factors of a whole number, only list factors that are also whole numbers.
$2 \times 12=24$
Factors: \qquad , \qquad

\qquad
\qquad $=24$ \qquad
\qquad $=24$ \qquad $=24$

Factors: \qquad , \qquad Factors: \qquad , \qquad Factors: \qquad ,

The factors of 24 , from least to greatest, are
\qquad , \qquad , \qquad , , \qquad , \qquad and \qquad .

Two factors that make a product are sometimes called a factor pair.
How many factor pairs does 24 have? Explain.

Share and Show MATM

1. Use the arrays to name the factors of 12 .

\qquad \times \qquad $=12$ \qquad \times \qquad $=12$

\qquad \times \qquad $=12$

The factors of 12 are 1 , \qquad , 3, \qquad 6, and \qquad .

Use tiles to find all the factors of the product. Record the arrays and write the factors shown.
2. 5 : \qquad

3. 20 : \qquad

4. 25:

\qquad

On Your Own

Practice: Copy and Solve Use tiles to find all the factors of the product. Record the arrays on grid paper and write the factors shown.
5. 9
6. 21
7. 17
8. 18

Problem Solving REAL WORLD

Use the diagram for 9-10.
9. Write Math Pablo is using 36 tiles to make a patio. Can he arrange the tiles in another way and show the same factors? Draw a quick picture and explain.

10. How many different rectangular arrays can Pablo make with all 36 tiles, so none of the arrays show the same factors?
11. If.O.I. 6 is a factor of a number, what other numbers must be factors of the number?
\qquad
12. Jean spent $\$ 16$ on new T-shirts. If each shirt cost the same wholedollar amount, how many could she have bought?
\qquad

UNLOCK the Problem REAL WORLD

13. Carmen has 18 connecting cubes. She wants to model a house shaped like a rectangle. If the model has a height of one connecting cube, how many different ways can Carmen model the house using all 18 connecting cubes?

a. What do you need to know? \qquad
\qquad
b. How is finding the number of ways to model a rectangular house related to finding factor pairs? \qquad
\qquad
\qquad
c. Why is finding the factor pairs only the first step in solving the problem? \qquad
\qquad
\qquad
d. Show the steps you used to solve the problem.
\qquad
\qquad
\qquad
\qquad
14. How many ways could Carmen make a rectangular house if she used 24 connecting cubes? Explain.
\qquad
\qquad
\qquad
15. Test Prep Which of the following shows a factor pair for the number $16 ?$
(A) 2 and 8
(B) 2 and 32
(C) 8 and 16
(D) 16 and 32
\qquad

Factors and Divisibility

Essential Question How can you tell whether one number is a factor of another number?

UNLOCK the Problem

Students in Carlo's art class painted 32 square tiles for a mosaic. They will arrange the tiles to make a rectangle. Can the rectangle have 32 tiles arranged into 3 equal rows, without gaps or overlaps?

$(1$ One Way Draw a model.

Think: Try to arrange the tiles into 3 equal rows to make a rectangle.

Mosaics are decorative patterns made with pieces of glass or other materials.

Math Idea

A factor of a number divides the number evenly. This means the quotient is a whole number and the remainder is 0 .

Think: Divide to
see whether the unknown factor is a
whole number.

The unknown factor in $3 \times$$=32$ \qquad a whole number.

So, a rectangle \qquad have 32 tiles arranged in 3 rows.

- Explain how you can tell if 4 is a factor of 30 .

Divisibility Rules A number is divisible by another number if the quotient is a counting number and the remainder is 0 .

Some numbers have a divisibility rule. You can use a divisibility rule to tell whether one number is a factor of another.
$?$
Is 6 a factor of 72?
Think: If 72 is divisible by 6 , then 6 is a factor of 72 .
Test for divisibility by 6 :

Divisibility Rules	
Number	Divisibility Rule
2	The number is even.
3	The sum of the digits is divisible by 3 .
5	The last digit is 0 or 5 .
6	The number is even and divisible by 3.
9	The sum of the digits is divisible by 9 .

Is 72 even? \qquad
What is the sum of the digits of 72 ?
\qquad $+$ \qquad $=$ \qquad
Is the sum of the digits divisible by 3 ?

72 is divisible by \qquad .

So, 6 is a factor of 72 .

Try This! List all the factor pairs for 72 in the table.

Complete the table.

Show your work.

- How did you check if 7 is a factor of 72? Explain.
\qquad

Share and Show

1. Is 4 a factor of 28 ? Draw a model to help.

Think: Can you make a rectangle with 28 squares in 4 equal rows?

4 \qquad a factor of 28.

Math Talk number, is 6 always a factor of the number? Explain.

Is 5 a factor of the number? Write yes or no.
2. 27
© 3. 30
4. 36
5. 53

On Your Own.

Is 9 a factor of the number? Write yes or no.
6. 54
7. 63
8. 67
9. 93

List all the factor pairs in the table.
10.

11.

Factors of 39		
$\ldots \times \ldots$	$=\ldots$	
$\times \ldots \ldots$		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem Solving REAL WORLD

Use the table to solve 14-15.

14. Dirk bought a set of stamps. The number of
stamps in the set he bought is divisible by $2,3,5,6$, and 9 . Which set is it?
15. H.O.I. Geri wants to put 6 stamps on some pages in her stamp book and 9 stamps on other pages. Explain how she could do this with the stamp set for Sweden.
\qquad
\qquad SHOW YOUR WORK
16. Test Prep Mrs. Mastrioni bought a set of 80 stamps. She wanted to give all the stamps to her students as a reward. She could give equal numbers of stamps to
(A) 2 or 3 students.
(B) 2 or 6 students.
(C) $2,4,5$, or 8 students.
(D) $2,4,8$, or 9 students.

Problem Solving • Common Factors

Essential Question How can you use the make a list strategy to solve problems with common factors?

UNLOCK the Problem real world

Chuck has a coin collection with 30 pennies, 24 quarters, and 36 nickels. He wants to arrange the coins into rows. Each row will have the same number of coins, and all the coins in a row will be the same. How many coins can he put in each row?

The information in the graphic organizer below will help you solve the problem.

Read the Problem

 What do I need to find?I need to find \qquad
that can go in each row so that each row has
\qquad
\qquad

What information do I need to use?
Chuck has \qquad
\qquad . Each row has \qquad
\qquad
\qquad .

How will I use the information?

I can make a list to find all the factors of
\qquad . Then I can use the list to find the common factors. A common factor is a factor of two or more numbers.

Solve the Problem

I can list all the factors of each number. Then | can circle the factors that are common to all three numbers.

Factors of: $30 \quad 2436$

The common factors are \qquad .

So, Chuck can put \qquad , \qquad , \qquad or \qquad coins in each row.

I Try Another Problem

Ryan collects animal figures. He has 45 elephants, 36 zebras, and 18 tigers. He will arrange the figures into rows. Each row will have the same number of figures, and all the figures in a row will be the same. How many figures can be in each row?

Use the graphic organizer below to help you solve the problem.

Read the Problem	Solve the Problem
What do I need to find?	
What information do I need to use?	
How will I use the information?	

So, Ryan can put \qquad , or \qquad figures in each row.

Math Talk How did making a list help you solve the problem?
\qquad

Share and Show

1. Lucy has 40 bean plants, 32 tomato plants, and 16 pepper plants. She wants to put the plants in rows with only one type of plant in each row. All rows will have the same number of plants. How many plants can Lucy put in each row?

First, read the problem and think about what you need to find. What information will you use? How will you use the information?

Next, make a list. Find the factors for each number in the problem.
\qquad
\qquad

Finally, use the list. Circle the common factors.
So, Lucy can put \qquad , \qquad , \qquad or \qquad plants in each row.
2. What if Lucy has 64 bean plants instead of 40 bean plants? How many plants can Lucy put in each row?
3. H.O.T. One common factor of two numbers is 40. Another common factor is 10 . If both numbers are less than 100, what are the two numbers?
\qquad
4. The sum of two numbers is 136 . One number is 51 . What is the other number? What are the common factors of these two numbers?
5. H.O.I. A number is called a perfect number if it equals the sum of all of its factors except itself. For instance, 6 is a perfect number because its factors are $1,2,3$, and 6 , and $1+2+3=6$. What is the next greater perfect number?
\qquad
6. H.O.I. Write Math Sona knits 10 squares a day for 7 days. Can she sew together the squares to make 5 equal-sized blankets? Explain.
\qquad
\qquad
7. Julianne earned $\$ 296$ working at a grocery store last week. She earns $\$ 8$ per hour. How many hours did Julianne work?
8. H.O.T. There are 266 students watching a play in the auditorium. There are 10 rows with 20 students in each row and 5 rows with 8 students in each row. How many students are sitting in each of the 2 remaining rows if each of those rows has an equal number of students?
9. Test Prep Which of the following is NOT a common factor of 24,48 , and 72 ?
(A) 4
(B) 6
(C) 12
(D) 48

Choose a STRATEGY

Act It Out

Draw a Diagram
Find a Pattern
Make a Table or List
Solve a Simpler Problem

SHOW YOUR WORK

Name \qquad

Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box.

1. A number that is multiplied by another number to find a product is called a \qquad (p. 193)

Vocabulary
common factor
divisible
factor
2. A number is \qquad by another number if the quotient is a counting number and the remainder is zero. (p. 198)

Concepts and Skills

List all the factors from least to greatest.
3. 8
4. 14

Is 6 a factor of the number? Write yes or no.
5. 81
6. 45
7. 42
8. 56

List all the factor pairs in the table.
9.

List the common factors of the numbers.
10.

12. 20 and 50

Fill in the bubble completely to show your answer.
13. Sean places 28 tomato plants in rows. All rows contain the same number of plants. Which of these can be the number of plants in a row?
(A) 3
(B) 5
(C) 7
(D) 8
14. Ella bought some key chains. If she paid $\$ 24$ for the key chains, and each one cost the same whole-dollar amount, how many could she have bought?
(A) 5
(B) 6
(C) 7
(D) 10
15. Sandy has 16 roses, 8 daisies, and 32 tulips. She wants to arrange all the flowers in bouquets. Each bouquet has the same number of flowers and the same type of flower. How many flowers could be in a bouquet?
(A) 3
(B) 6
(C) 8
(D) 16
16. Amir arranged 9 photos on a bulletin board. He put the photos in rows. Each row contains the same number of photos. How many photos could be in each row?
(A) 1,3, or 6
(B) 1,2 , or 9
(C) 1,3 , or 9
(D) 3,6 , or 9
\qquad

Factors and Multiples

Essential Question How are factors and multiples related?

3 UNLOCK the Problem
 REAL
 WORLD

Toy animals are sold in sets of $3,5,10$, and 12 . Mason wants to make a display with 3 animals in each row. Which sets could he buy, if he wants to display all of the animals?

The product of two numbers is a multiple of each number. Factors and multiples are related.

$$
\begin{aligned}
& \qquad \begin{array}{c}
3 \\
\uparrow \\
\uparrow \\
\text { factor factor }
\end{array} \quad \begin{array}{c}
\uparrow \\
\\
\end{array} \\
& \\
& \\
& \text { multiple of } 3
\end{aligned}
$$

1 One Way Eind fators.

- How many animals will be in each row?
- How many animals are sold in each set?
\qquad

Tell whether 3 is a factor of each number.
Think: If a number is divisible by 3 , then 3 is a factor of the number.

Is 3 a factor of 3 ? \qquad
Is 3 a factor of 5 ? \qquad
Is 3 a factor of 10 ? \qquad
Is 3 a factor of 12 ? \qquad
3 is a factor of \qquad and \qquad .

1 Another Way Find multiples.

Multiply and make a list. \qquad , \qquad , \qquad 1 ,...
\qquad and \qquad are multiples of 3 .

So, Mason could buy sets of \qquad and \qquad toy animals.

Common Multiples A common multiple is a multiple of two or more numbers.

P Example find common multiples.

Tony works every 3 days and Amanda works every 5 days. If Tony works June 3 and Amanda works June 5, on what days in June will they work together?

Circle multiples of 3. Draw a box around multiples of 5 .

June							
Sun	Mon	Tue	Wed	Thu	Fri	Sat	
	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
21	22	23	24	25	26	27	
28	29	30					

Think: The common multiples have both a circle and a box.

The common multiples are \qquad and \qquad .

So, Tony and Amanda will work together on June \qquad and June \qquad .

Share and Show

1. Multiply to list the next five multiples of 4 .
\qquad
4 \qquad , \qquad , \qquad , \qquad , \qquad

Is the number a factor of $\mathbf{6}$? Write yes or no.
2. 3
3. 6
4. 16
5. 18

Is the number a multiple of $\mathbf{6}$? Write yes or no.
6. 3
7. 6
8. 16
9. 18
\qquad

On Your Own

Is the number a multiple of 3 ? Write yes or no.
10. 4
11. 8
12. 24
13. 38

List the next nine multiples of each number.
Find the common multiples.
14. Multiples of 2: 2, \qquad
Multiples of 8: 8, \qquad
Common multiples: \qquad
15. Multiples of 5: 5, \qquad
Multiples of 10: 10, \qquad
Common multiples: \qquad
16. Multiples of 6: 6, \qquad
Multiples of 7: 7, \qquad
Common multiples: \qquad

Algebra Find the unknown number.
17. $12,24,36$, \qquad
18. $25,50,75,100$, \qquad

Tell whether 20 is a factor or multiple of the number.
Write factor, multiple, or neither.
22. Every whole number is a multiple of 1.2 23. Every whole number is a factor of 1.

Problem Solving REAL WORLD

Complete the Venn diagram. Then use it to solve 24-26.
24. What multiples of 4 are not factors of 48 ?
25. What factors of 48 are multiples of 4 ?
26. H.O.T. Pose a Problem Look back at

Problem 24. Write a similar problem by changing the numbers. Then solve.
\qquad
\qquad
27. Kia paid $\$ 10$ for two charms. The price of each charm was a multiple of $\$ 2$. What are the possible prices of the charms?
28. H.O.I. What's the Question? The answer is $9,18,27,36,45$.
\qquad
\qquad
29. Write Math How do you know whether a number is a multiple of another number?
\qquad
\qquad
30. Test Prep Sophie is planting a garden. Her garden is divided into equal sections, each measuring 4 meters in length. Which could be the total length of her garden?
(A) 24 meters
(C) 27 meters
(B) 25 meters
(D) 30 meters

SHOW YOUR WORK

Prime and Composite Numbers

Essential Question How can you tell whether a number is prime
or composite?

UNLOCK the Problem REAL wORLD

Students are arranging square tables to make one
larger, rectangular table. If the students want to choose from the greatest number of ways to arrange the tables, should they use 12 or 13 square tables?
-What are the factors of 12 ?

$$
2
$$

\qquad

1
Use a grid to show all the possible arrangements of 12 and 13 tables.

Draw all of the possible arrangements of 12 tables and 13 tables. Label each drawing with the factors modeled.

So, there are more ways to arrange \qquad tables.

ERROR Alert

The same factors in a different order should be counted only once. For example, 3×4 and 4×3 are the same factor pair.

- A prime number is a whole number greater than 1 that has exactly two factors, 1 and itself.

Math Talk

Explain how knowing whether 12 and 13 are prime or composite could have helped you solve the problem above.

- A composite number is a whole number greater than 1 that has more than two factors.

Factors of 12 : \qquad , \qquad , \qquad , \qquad , \qquad , \qquad
Factors of 13: \qquad , \qquad
12 is a \qquad number, and 13 is a \qquad number.

Divisibility You can use divisibility rules to help tell whether a number is prime or composite. If a number is divisible by any number other than 1 and itself, then the number is composite.

P Tell whether 51 is prime or composite.
Is 51 divisible by 2 ?

Math Idea

The number 1 is neither prime nor composite, since it has only one factor: 1.

Think: 51 is divisible by a number other than 1 and 51.
51 has more than two factors.
So, 51 is \qquad .

Share and Show
 MATH

1. Use the grid to model the factors of 18 . Tell whether 18 is prime or composite.

Factors of 18: \qquad , \qquad , —, \qquad
\qquad
\qquad
Think: 18 has more than two factors.
So, 18 is \qquad .

Tell whether the number is prime or composite.
2. 11

Think: Does 11 have other factors besides 1 and itself?
3. 73
$\xrightarrow{ }$
| 4. 69
$\underline{ }$
5. 42
\qquad

On Your Own

Tell whether the number is prime or composite.
6. 18
\qquad
7. 49

8. 29
10. 33
\square
11. 89
\qquad
12. 52
\qquad
9. 64
\qquad
13. 76
\qquad

Write true or false for each statement. Explain or give an example to support your answer.
14. The number 1 is not prime.
\qquad
\qquad
\qquad
16. Only odd numbers are prime numbers.

Problem Solving.

18. Name a 2-digit odd number that is composite.
\qquad
19. Test Prep The number 2 is
(A) prime
(B) composite
(C) neither prime nor composite
(D) both prime and composite

Connect tol Social Studies

The Sieve of Eratosthenes

Eratosthenes was a Greek mathematician who lived more than 2,200 years ago. He invented a method of finding prime numbers, which is now called the Sieve of Eratosthenes.
20. Follow the steps below to circle all prime numbers less than 100. Then list the prime numbers.

STEP 1

Cross out 1 , since 1 is not prime

STEP 2
Circle 2, since it is prime. Cross out all other multiples of 2 .

STEP 3
Circle the next number that is not crossed out. This number is prime. Cross out all the multiples of this number.

STEP 4
Repeat Step 3 until every number is either circled or crossed out.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

So, the prime numbers less than 100 are
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
21. Explain why the multiples of any number other than 1 are not prime numbers.
\qquad
\qquad

Number Patterns

Essential Question How can you make and describe patterns?

UNLOCK the Problem REAL wORLD

Daryl is making a pattern for a quilt. The pattern shows 40 squares. Every fourth square is blue. How many blue squares are in the pattern?

- Underline what you are asked to find.
- Circle what you need to use.

A pattern is an ordered set of numbers or objects. Each number or object in the pattern is called a term.

(1) Activity Find a pattern.

Materials $=$ color pencils
Shade the squares that are blue.

	1	2	3	4	5	6	7	8	9	10	
	11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30		
31	32	33	34	35	36	37	38	39	40		

Which squares are blue? \qquad
So, there are \qquad blue squares in the pattern.

1. What patterns do you see in the arrangement of the blue squares?
\qquad
\qquad
2. What patterns do you see in the numbers of the blue squares?
\qquad

P Example find and describe a pattern.

The rule for the pattern is add 5 . The first term in the pattern is 5 .
(A) Use the rule to write the numbers in the pattern.

5, 10, \qquad , ...
(B) Describe other patterns in the numbers.

What do you notice about the digits in the ones place?
\qquad
\qquad
Describe the pattern using the words odd and even.
\qquad
\qquad
Describe the pattern using the word multiples.
\qquad
\qquad

Try This! Find and describe a pattern.

The rule for the pattern is add 3 , subtract 1 . The first term in the pattern is 6 .

Describe another pattern in the numbers.
\qquad
\qquad
\qquad
\qquad

Share and Show

Use the rule to write the numbers in the pattern.

1. Rule: Subtract 10.

Think Subtract 10

First term: 100
first term in a pattern helps you find the next term.

100, \qquad , \qquad , \qquad , \qquad , ...

Use the rule to write the numbers in the pattern. Describe another pattern in the numbers.
\qquad 2. Rule: Multiply by 2.

First term: 4
4, \qquad , \qquad , \qquad , \qquad , ...
3. Rule: Skip-count by 6.

First term: 12
12, \qquad , \qquad , \qquad , \qquad , ...
\qquad

On Your Own

Use the rule to write the first twelve numbers in the pattern.
Describe another pattern in the numbers.
4. Rule: Add 7.
First term: 3
\qquad
\qquad
5. Rule: Subtract 5.

First term: 94
\qquad
\qquad
6. Rule: Subtract 2 , add 3 . First term: 6
\qquad
\qquad
7. Rule: Add 2, add $1 . \quad$ First term: 12

Problem Solving REAL WORLD

8. The odd- and even-numbered hotel rooms are on different sides of the hall. Room 231 is between which two rooms?
\qquad
\qquad

Pose a Problem

10. An activity at the Math Fair shows two charts.
11. Test Prep Which pattern follows the rule add 3, subtract 1 ?
(A) $60,63,60,63, \ldots$
(B) $3,1,4,2, \ldots$
(C) $60,63,62,65, \ldots$
(D) $60,63,66,69, \ldots$

Numbers
2
3
5
6
10

Numbers

Use at least two of the numbers and an operation from the charts to write a pattern problem. Include the first five terms of your pattern in the solution to your problem.

Pose a problem.	

- Describe other patterns in the terms you wrote.
\qquad

Chapter Review/Test

Vocabulary

Choose the best term from the box.

1. The product of two numbers is a \qquad of both numbers. (p. 207)
2. A \qquad has exactly two factors. (p. 211)

Vocabulary

composite number
factor
multiple
prime number
3. A number is always a multiple of its \qquad (p. 207)

Concepts and Skills

List all the factor pairs in the table.
4.

5.

Is the number a multiple of 9 ? Write yes or no.
6. 3 \qquad 7. 39 \qquad 8. 45
9. 93
\qquad

Tell whether the number is prime or composite.
10. 65 \qquad 11. 37 \qquad 12. 77 \qquad

Use the rule to write the first twelve terms in the pattern. Describe another pattern in the numbers.
13. Rule: Add 10, subtract 5. \qquad
First term: 11

Fill in the bubble completely to show your answer.
14. Erica knits 18 squares on Monday. She knits 7 more squares each day for the rest of the week. How many squares does Erica have on Friday?
(A) 36
(B) 46
(C) 54
(D) 90
15. James works in a flower shop. He will put 36 tulips in vases for a wedding. He must use the same number of tulips in each vase. How many tulips could be in each vase?
(A) $1,2,8$
(B) $2,4,8$
(C) $2,4,9$
(D) $6,12,16$
16. What multiple of 7 is a factor of 7 ?
(A) 0
(B) 1
(C) 7
(D) 14
17. Hot dogs come in packages of 6 . Hot dog buns come in packages of 8 . Antonio will buy the same number of hot dogs as hot dog buns. How many hot dogs could he buy?
(A) 6
(B) 8
(C) 18
(D) 24
18. Sean has 54 flower bulbs. He planted all the bulbs in rows. Each row has the same number of bulbs. How many bulbs could be in each row?
(A) 6
(B) 8
(C) 12
(D) 26
\qquad
19. An ice-cream truck visits Julio's street every 3 days and Lara's street every 4 days. The truck visits both streets on April 12. When will the truck visit both streets next?

April						
Sun			Wed	Thu	Fir	Sat
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					

(A) April 15
(B) April 16
(C) April 19
(D) April 24
20. The factors of a number include $2,3,4,6,8,12,16,32$, and 48 . Which could be the number?
(A) 32
(B) 64
(C) 96
(D) 98
21. Ms. Booth has 16 red buttons and 24 blue buttons. She is making finger puppets. Each puppet has the same number of blue buttons and red buttons. How many puppets can she make if she uses all of the buttons?
(A) $1,2,4$, or 8
(B) $1,2,4,8$, or 16
(C) $1,2,4,8$, or 24
(D) $1,2,4,8,16$, or 24

Constructed Response

22. I am a number between 60 and 100. My ones digit is two less than my tens digit. I am a prime number. What number am I? Explain.
\qquad
\qquad
\qquad
\qquad

Performance Task

23. The number of pieces on display at an art museum is shown in the table.

A The museum's show for July features 30 oil paintings by different artists. All artists show the same number of paintings and each artist shows more than 1 painting. How many artists could be featured in the show?
(B) The museum wants to display all the art pieces in rows. Each row has the same number of pieces and the same type of pieces. How many pieces could be in each row?

C The museum alternates between adding 3 new pieces one month and retiring one piece the following month. If the museum starts with 75 pieces and the pattern continues, write the numbers in the pattern for the next 8 months. Describe other patterns in the numbers.
\qquad
\qquad
\qquad
\qquad

