Write a Rule for Number Patterns in Tables

(| Can) write a rule to describe a pattern.

70			Z
\leq	U	LU	N
1			

Think:

the **Problem**

When the output in a pattern depends on the input, you can write a rule to describe the relationship between inputs and outputs.

Ellery wants to buy light-up balls for a party. They cost \$1 each. The store charges the same shipping fee regardless of how many light-up balls are ordered. So, Ellery has to pay for the light-up balls and pay a shipping fee. The table below shows the cost *c* for *w* light-up balls. How much will Ellery pay for 12 light-up balls?

Write a rule to describe the pattern in the table.

Input	W	2	4	6	8
Output	C	4	6	8	10

STEP 1 Describe the relationship between the number of light-up balls and the cost.

Input Output ↓ ↓	:
2 + 2 = 4	2 light-up balls + 2 = cost
4 + 2 = 6	4 light-up balls + 2 = cost
6 + 2 = 8	6 light-up balls + 2 = cost
8 + 2 = 10	8 light-up balls $+ 2 = cost$

Matr Engage in discussions on Talk **4.1** mathematical thinking.

Explain how you can find the cost for 5 light-up balls.

The output is _____ more than the input.

STEP 2 Decide what operation to use to write a rule.

STEP 3 Use the rule to find the cost of 12 light-up balls.

c = w + 2

c =_____ + 2 Replace *w* with the number of light-up balls.

c = Add to find the cost.

So, the 12 light-up balls cost \$ _____.

Algebraic Reasoning 5.AR.3.1 Mathematical Thinking & Reasoning MTR.1.1, MTR.2.1, MTR.4.1, MTR.5.1, MTR.6.1, MTR.7.1

Example Find the rule.		Input	Output
	Think:	n	у
Patterns can also involve multiplication.	1 × = 7	1	7
The output is times the input. The pattern is multiplicative.	2 × = 14	2	14
The rule is $y = $	3 × = 21	3	21
	4 × = 28	4	28

Try Another Problem Real

1. Use a rule to describe the pattern in the table.

Rule:

Decide if the pattern shown in the table is additive or multiplicative. Write a rule to describe the pattern.

Input	Output
а	C
2	5
4	7
6	9
8	11
ie pat	tern is

© Houghton Mifflin Harcourt Publishing Company