 ______ Complete Crossword Puzzle to review vocabulary
 ______ Complete Concept Review, WB pgs. 37-38 (attached)

II. Chapter 20 (SC.912.E.7.1, SC.912.E.7.3, SC.912.P.10.4)
 ______ Read Section 1, TB pgs. 543-548
 ______ Complete Section Review, TB pg. 548 (#1-10)
 ______ Complete Concept Review, WB pgs. 39-40 (attached)

 ______ Read Chapter 21, do Concept Review, WB pgs. 41-42 (attached)
 ______ Use Chapter 21 to complete the weather worksheets. (You may use your textbook and any online resource)

IV. Chapter 22 (SC.912.E.7.3, SC.912.E.7.4, SC.912.E.7.7, SC.912.E.7.9)
 ______ Complete Concept Review, WB pgs. 43-44 (attached)
 ______ Answer the questions below using Chapter 22:
 a. What factors affect climate of an area?
 b. How does latitude affect climate?
 c. How do wind and ocean currents affect the surface temperature of oceans?
 d. How does the ocean affect climate in an area?
 e. How do scientists study past climates?
 f. Is climate change caused by natural causes, human activity or both? Explain.
 g. How can we minimize our contribution to climate change?

 ______ Read this section in your textbook and answer the questions below:
 1. Use Figure 2 on pg. C2-What currents affect Florida? Are they cold or warm currents?
 2. Generally, how would you describe the topography of Florida?
 3. What air mass affects Florida?
 4. Use Figure 3 on pg. C5-What is the average annual precipitation for Tallahassee? How about Miami? Pick another city on the map and give its annual precipitation.
 5. Use Graph 1 on pg. C5-How does the average monthly rainfall in Miami compare to the rainfall in Key West?
 6. How can El Nino affect Florida's weather and climate?
 7. What types of climate zones are found in Florida?
 8. Use Figure 1 on pg. C8-How has Florida's location changed over time?
 9. Describe the carbonate platform in Florida? How and when did it form?
 10. Use Figure 11 pg. C13-How has Florida's land area changed over time?
11. What formed the Florida Keys?
12. What is affecting the health of corals around Florida?
13. Use Table 1, pg. C16-where are most of Florida's water resources located?
14. What is an aquifer? What aquifer supplies Tallahassee with our drinking water?
15. What type of sedimentary rock makes up the majority of underlying rock in Florida?
16. Where in Florida are the majority of springs?
17. What types of energy resources are used in Florida for electricity generation?
18. How many nuclear power plants can be found in Florida?
19. How many hydroelectric power plants are found in Florida? Where are they?
20. What types of mineral resources are found in Florida?
21. What is a karst formation?
22. What causes sinkholes?
23. What are five natural hazards found in Florida?
24. How would rising sea level affect Florida?

VI. Weather Chart – Use any online source or the Deerlake Weatherstem page to record the weather for 10 days. You may pick any location.

<table>
<thead>
<tr>
<th>Date</th>
<th>Location (city, state)</th>
<th>High Temp</th>
<th>Low Temp</th>
<th>Rainfall Amt</th>
<th>Cloud cover (sunny, partly cloudy, etc)</th>
<th>General Weather</th>
<th>Wind Speed and Direction</th>
<th>Other weather information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weather Terms

Across
4. A large body of air that had the same characteristics throughout
7. An air mass that forms over an ocean
11. An Instrument used to measure the amount of precipitation
12. Measures how hot or cold it is
13. A tool used to measure air pressure
14. The amount of moisture in the air
15. The layers of Earths atmosphere are categorized according to

Down
1. The layer of Earths atmosphere that contains the ozone layer
2. The force of all the air pressure pressing on the earth
3. A large, spiraling storm that can be hundreds of miles across and can last for more than a week
5. The layer of Earths atmosphere where weather occurs
6. When a tropical storm becomes a hurricane, it is due to the change in
8. Horizontal movement of air from an area of H pressure to L pressure
9. Thunderstorms often occur with a ____ front
10. Measures wind speed
Weather Map

Complete the chart by interpreting the symbols on the map.

Wind Scale (mph)

Weather Elements	San Francisco	Miami	Fort Worth
Temperature (°F) | | | |
Sky conditions | | | |
Direction of wind | | | |
Speed of wind (mph) | | | |
Atmospheric pressure | | | |
Types of Weather Fronts

When large masses of warm air and cold air meet, they do not mix. Instead, they form a front, usually hundreds of miles long. When a front passes, the weather changes. The chart describes the four main types of fronts and the weather changes each type brings.

<table>
<thead>
<tr>
<th>Type of Front</th>
<th>How It Forms</th>
<th>Weather It Brings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold front</td>
<td>Forms when a cold air mass pushes under a warm air mass, forcing the warm air to rise.</td>
<td>Thunderheads can form as the moisture in the warm air mass rises, cools, and condenses. As the front moves through, cool, fair weather is likely to follow.</td>
</tr>
<tr>
<td>Warm front</td>
<td>Forms when a moist, warm air mass slides up and over a cold air mass.</td>
<td>As the warm air mass rises, it condenses into a broad area of clouds. A warm front brings gentle rain or light snow, followed by warmer, milder weather.</td>
</tr>
<tr>
<td>Stationary front</td>
<td>Forms when warm and cold air meet and neither air mass has the force to move the other. They remain stationary, or "standing still."</td>
<td>Where the warm and cold air meet, clouds and fog form, and it may rain or snow. Can bring many days of clouds and precipitation.</td>
</tr>
<tr>
<td>Occluded Front</td>
<td>Forms when a warm air mass gets caught between two cold air masses. The warm air mass rises as the cool air masses push and meet in the middle.</td>
<td>The temperature drops as the warm air mass is occluded, or "cut off," from the ground and pushed upward. Can bring strong winds and heavy precipitation.</td>
</tr>
</tbody>
</table>
Moving Masses, led by Fronts!
Investigating moving air masses and their associated weather fronts.

1. Along a front, which air is always forced up?
 A. The wettest air
 B. Warmer, less dense air
 C. The fastest moving air
 D. The driest air

2. High-pressure systems usually are associated with ___________ and low-pressure systems are associated with ___________.
 A. Clouds and precipitation, fair weather
 B. The jet stream, fronts
 C. Fair weather, clouds and precipitation
 D. Fair weather, fair weather

3. In the Northern Hemisphere, winds in cyclone blow:
 A. Clockwise toward the center
 B. Counterclockwise toward the center
 C. Sometimes clockwise otherwise straight
 D. Clockwise outward from the center

4. To show where the warm and cold air is located, write the words "WARM" and "COLD" on the proper side of each front below.

 ![Diagram with directions]
 Which direction is the warm front moving? ___________
 Which direction is the cold front moving? ___________

5. Draw a warm or cold front on the maps below. Use the wind and front direction arrows to help you decide which type of front to draw, and the direction it is moving.

 ![Maps with wind and front direction arrows]
1. List the different fronts shown on the weather map.

2. Which kind of air mass would the north Atlantic be in?

3. In what direction is the front near Phoenix moving?

4. What is the definition of an air mass?

5. What kind of front is near Denver?

6. What kind of front is north of Chicago?

7. What kind of air mass would be over Great Falls?

8. Would Los Angeles have clear or cloudy skies? Explain your answer.

9. What kind of air mass would Washington D.C. experience?
Concept Review 22

Page 1 of 3

Date

Name

1. The concept change is not a minor change and serves a significant purpose.
2. The concept change is not a change to a local change.
3. The concept change is not a change to a local change.
4. The concept change is not a change to a local change.
5. The concept change is not a change to a local change.
6. The concept change is not a change to a local change.

7. The concept change is not a change to a local change.
8. The concept change is not a change to a local change.
9. The concept change is not a change to a local change.
10. The concept change is not a change to a local change.

11. The concept change is not a change to a local change.
12. The concept change is not a change to a local change.
13. The concept change is not a change to a local change.
14. The concept change is not a change to a local change.
15. The concept change is not a change to a local change.
16. The concept change is not a change to a local change.
17. The concept change is not a change to a local change.
18. The concept change is not a change to a local change.
19. The concept change is not a change to a local change.
20. The concept change is not a change to a local change.

21. The concept change is not a change to a local change.
22. The concept change is not a change to a local change.
23. The concept change is not a change to a local change.
24. The concept change is not a change to a local change.
25. The concept change is not a change to a local change.
26. The concept change is not a change to a local change.

27. The concept change is not a change to a local change.
28. The concept change is not a change to a local change.
29. The concept change is not a change to a local change.
30. The concept change is not a change to a local change.
31. The concept change is not a change to a local change.
32. The concept change is not a change to a local change.